
An Approach to Mine Business Rule Intents from
Domain-specific Documents

Abhidip Bhattacharyya, Pavan Kumar Chittimalli, Ravindra Naik
TRDDC, TCS Innovation Labs,

Pune, India
{abhidip.bhattacharyya1, pavan.chittimalli, rd.naik}@tcs.com

ABSTRACT
An enterprise system enables business by providing various
services that are guided by set of well-defined processes, and
adhere to certain business rules and constraints. The busi-
ness rules are usually written using English in operating pro-
cedures, terms and conditions, and various other supporting
documents. For implementing the business rules in a soft-
ware system, or expressing them as UML use-case specifi-
cations, analysts manually interpret the documents, leading
to potential discrepancies, ambiguities, and quality issues in
the software system that can be resolved only after testing.

To minimize such errors, we propose a novel method to
mine the documents automatically to extract the fundamen-
tal atomic facts in every sentence - called as business rule
intents. We adopt dependency tree parser to parse the rule
sentences and extract rule intents from them. Our experi-
ments using few publicly available sample documents in the
financial domain yielded very promising results, where rule
intents extraction produced an average precision of 78% and
recall of 80%.

1. INTRODUCTION
Business rules are the backbone of enterprise systems that

provide various business services. These services are catered
by executing a set of rules defined in a given process. The
business rules eventually become core of the implementa-
tion within an IT system that automates the processes. The
‘as-is’ (implemented) rules can be found in the source code
of the IT system, while the rules defined by business own-
ers and policy makers are found in documents like manuals,
user guides, requirements documents, terms and conditions,
and do’s & don’ts. In general, business rules are defined
by the needs of the business and constrained by regulations
- policy guidelines of the business and government authori-
ties. Usually created by business analysts, the business rules
typically reside in documents written in natural language.
IT system owners and designers need to “understand” the
business rules before they can be implemented in the IT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISEC ’17, February 05 - 07, 2017, Jaipur, India
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4856-0/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3021460.3021470

system. To analyze the rules, extracting them from the doc-
uments and expressing them in a comprehensible manner is
required. Given that the documents are usually very large,
contain several rules with lot of noise, and are written in nat-
ural language, the manual extraction of business rules from
these documents is an extremely cumbersome activity. The
extracted rules if expressed yet again in natural language,
are not always easy for humans to comprehend and analyze
for inconsistencies. Therefore, extracting the specific busi-
ness rules from various documents and expressing them in a
comprehensible manner are both important concerns.

Semantics of Business Vocabulary and RulesTM (SBVRTM) [4]
is a comprehensive standard for business rule representation
by Object Management Group (OMG) [2]. SBVR is a Con-
trolled Natural Language (CNL) and describes rules consid-
ering only a set of predefined business vocabularies. SBVR

is largely based on first order predicate logic with equality,
though it also supports restricted deontic and alethic modal
logic, and set theory. Its natural language interface with
formal logic makes it ideal for representing business rules.
Looking like English, this formal representation can enable
not only detecting inconsistencies, but other rule verifica-
tions too. With the SBVR representation, the problem is now
reduced to extracting SBVR rules from various documents.
The closest work is by Bajwa et al. [6], which generates
SBVR format from a single line of English text. In this work,
a user given English rule sentence (having a subject, object,
and a verb) is converted into a SBVR rule automatically. To
the best of our knowledge, there has been no further work in
mining SBVR rules or rules in any other form. A typical doc-
ument consisting of rule statements with lot of noise words
makes it hard to comprehend and identify meaningful busi-
ness rules. Another challenge is rule sentences with several
clauses that make rule comprehension even more difficult.
Moreover adherence to a particular format of the document
or format of the output may put question on the reusabil-
ity of the approach. Several techniques are proposed for
extracting rules from legacy code [16, 26, 28, 8, 29, 12] and
knowledge extraction from documents [19, 18, 10]. But there
is little work [22] in the area of business rule extraction from
documents.

In this paper, we propose a method for extracting rule
intents from the rule sentences. Rule sentence is a sentence
from the document that represent a fact or combination of
facts. Consider an example rule sentence - “No account is
opened in anonymous or fictitious name”. A rule intent is
an atomic fact or predicate present in a rule sentence. The
rule intents are isAnonymous(name), isFictitious(name) and

96

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3021460.3021470&domain=pdf&date_stamp=2017-02-05

¬doOpen(account, in name). We propose rule intents as
an intermediate step in eventually extracting business rules
aligning with SBVRTM standard. After extracting rule intents,
a combination of business vocabulary and the techniques
proposed by Bajwa et al. [6] can be a potential way for-
ward to create the SBVR rules automatically. Moreover an
approach like P.Chittimalli and K.Anand [9] may be help-
ful to verify the consistency of rule intents represented using
SBVR.

The main experiments consist of:

1. extract basic information as subject and object of a
verb in the sentence.

2. extract relations among words connected by the prepo-
sitions.

3. build a compound rule intent where one of the earlier
rule intents can be argument to another rule intent.

4. Splitting of rule intent based on argument.

5. negate the rule intent appropriately.

The paper is organized as follows: Section 2 describes the
related work done in this area. Section 3 provides a moti-
vating example to elaborate rule intents and significance of
the relations between them. In section 4, we describe the
detailed approach of identifying the rule intents. Section 5
illustrates the prototype tool and experimental results. Sec-
tion 6 describes the future work and Section 7 describes the
conclusion.

2. RELATED WORK
The text mining work focuses largely on applications to-

wards predictive classification or populating a database or
search index with extracted information. There appears lit-
tle research specific to mining of business rules or creat-
ing their formal representations. The related work can be
broadly classified into two categories 1) NLP techniques using
shallow parsing 2) NLP techniques using finer level of models.

The first category of techniques [20, 30, 25] uses shallow
parser [7]. R. Pandita et al. [20] proposed a method to gen-
erate code contracts from API document. The authors feed
the data to the shallow parser after pre-processing. The sen-
tences are converted into First Order Logic (FOL) formulae
using predefined templates on shallow parser. Xaio et al. [30]
proposed a method called Text2policy using shallow pars-
ing to extract access rule and action steps from access con-
trol policies (ACP). The authors implement negative meaning
implication (e.g. verb like disallow) and negative inference
(word like never, not). A. Sinha et al. [25] proposed a Lin-
guistic Analysis Engine to infer Use Case models from Use
Case Description (UCD) based on shallow parser. Their en-
gine is built on top of Unstructured Information Manage-
ment Architecture (UIMA). They incorporate context anno-
tators to allocate roles to the nouns occurring in the predi-
cates. These roles are either ACTORs or SYSTEMs. Ulti-
mately, they build process models by identifying the use case
action sequence and by scanning the actions against known
use case patterns. The three works described above use a
domain dictionary to classify the verbs into some predefined
classes depending on their semantic equivalence. Their tech-
niques serve specific purposes and are centred on particular

types of documents. They largely benefit from the structure
of the documents.

The second category of related work goes much finer level
than shallow parsing. The method proposed by S.Ghaisas et
al. [14] focused on retrieving rule intents from requirement
documents by matching them against patterns made up of
sequence of Part Of Speech (POS) tags, key words and their
repetitions denoted by wild characters like ‘*’, ‘+’ etc. They
discovered 29 intents (such as chronology, activity, temporal
check, threshold to denote the intention of rule intent) and
517 rule intent patterns. The authors used agglomerative
clustering to place co-occurring rules together.

Other than these two classes of work, there are few other
works that address the problem of extracting knowledge
from documents. Colette Rolland et al. [24] proposed an
approach to guide the construction of textual use case spec-
ifications from documents. They use the concept of case
grammar introduced by Fillmore [13]. Their approach clas-
sifies the semantic patterns into Clause and Sentence seman-
tic patterns to capture different surface structures of the
sentences having same deep meaning. The approach fur-
ther used set of rules and guidelines for converting the input
into a use case. Atkinson et al. [5] used genetic algorithms
for inferring hypothesis from scientific document written in
natural language. H.Zhong et al. [31] proposed a method
of inferring resource specifications from API document us-
ing machine learning. The knowledge extraction techniques
described above use Hidden Markov Model (HMM) [23] based
named entity recognition. Putrycz et al. [22] uses patterns
and keywords derived from source code to create mappings
between business rules from source code to documents.

All the above techniques basically focus on specific kind or
class of documents and take advantage of the structure and
format of the document. Most of the techniques make use of
predefined templates. The first category of the related work
uses shallow parser with predefined templates, making these
techniques tightly coupled and dependent on the document
structure. The second category of work of predefined tem-
plates using POS tag sequence makes it vulnerable to noise
since the POS tag sequence can produce incorrect rule intents
due to noisy word sequences. This brings us the problems
such as eliminating noise, identifying rule sentences in the
structured/unstructured documents, extracting rule intents
from sentences, and extracting relationship among the rule
intents.

The increasing complexity and volume of fi-

nancial transactions necessitate that customers

do not have multiple identities within a bank,

across the banking system and across the finan-

cial system.

Existing individual customers were required

to be allotted UCIC by end-May 2013.

Table 1: Fragment of the KYC document

3. MOTIVATING EXAMPLE
In this section, we illustrate our approach using a simple

but real-life example. Consider a fragment of the Know Your
Customer (KYC) document given in Table 1 for understand-
ing the overall objective of extracting business rule intent

97

and the relations among them.
The marking shows a relevant rule sentence in green color.

Noise is shown in color red . Noise elimination from the
sentence though is not in scope of our current approach we
put this as example to offer a broader view of our overall
problem.

The increasing complexity and volume of

financial transactions necessitate that cus-

tomers do not have multiple identities within a

bank, across the banking system and across the

financial system.

Existing individual customers were required to

be allotted UCIC by end-May 2013.

The task in our approach is to automatically extract rele-
vant atomic facts from the rule sentence. The facts extracted
from the rule sentences identified in the previous step are
shown below.

f1 : has(customer, identity, bank)

f2 : has(customer, identity, banking system)

f3 : has(customer, identity, financial system)

f4 : isMultiple(identity)

f5 : isExisting(customer)

f6 : isIndividual(customer)

f7 : allocate(customer, UCIC, May 2013)

Thus, the fragment of document in Table 1 has total 7
rule intents. The relations between rule intents extracted
for the example are shown below.

Rule1 :f1 ∧ f2 ∧ f3 → ¬f4
Rule2 :f5 ∧ f6 → f7

Table 2: The relations between rule intents for KYC

document

Subsequently, the extracted rules (rule intents and rela-
tions between them) will be converted to SBVR models, which
is a machine manipulatable format, to perform analyses for
verification & validation [9]. This representation serves as
(one of the) unambiguous functional specification for mul-
tiple purposes like traceability to rules in IT system, align-
ment with standards, and serve as critical part of the formal
specification of the business system. In this paper we discuss
the procedure for extracting the rule intents.

4. APPROACH
In this section, we first introduce our approach, and de-

scribe each phase of the approach in later parts of the sec-
tion.

The block diagram in Figure 1 illustrates our approach.
Rule sentences are parsed by natural language parser to pro-
duce the dependency trees. Our approach for rule intent
extraction takes this dependency tree as input and provides

Figure 1: Block diagram of our approach.

possible rule intents as output. The extraction of rule in-
tents from dependency tree is done in four stages. In first
stage, the subject and object for each rule is detected. In
second stage, the prepositional arguments are detected. In
third stage, the objective arguments are extracted with the
help of rule intents detected in the first stage. In fourth
stage, a negation of a rule intent is handled. In this stage, a
rule intent may be split into multiple rule intents based on
argument type and count.

4.1 Rule Intent Extraction
The objective of the Rule Intent Extraction (RIE) is to ex-

tract the rule intents from the rule sentences. Pattern/template
based rule intent extraction may bind the approach with
structure of the document. Hence we propose heuristic rules
defined on the dependency tree of the rule sentence. A depen-
dency tree captures the textual relation shared by the words
in that particular rule sentence. To create the dependency
tree, we used Stanford Dependency parser [11].

In this subsection, we use following four rule sentences as
examples to illustrate the rules of RIE.

(rs1) No account is opened in anonymous or fictitious name.

(rs2) If the ordering bank fails to furnish information on the
remitter, the beneficiary bank should consider restrict-
ing or even terminating its business relationship with
the ordering bank.

(rs3) In case the address mentioned as per ‘proof of address’
undergoes a change, fresh proof of address may be sub-
mitted to the branch within a period of six months.

(rs4) Bank should verify identity and the address of the cus-
tomer.

No account is opened in anonymous or fictitious name.

neg

nsubjpass

auxpass

prep in

conj or

amod

amod

Figure 2: Dependency tree of rs1

Consider the rule sentence rs1 for the illustration of de-
pendency tree. The corresponding dependency tree is shown

98

in Figure 2 using labelled edges. The dependency between
‘opened ’ and ‘account ’ is ‘nsubjpass’. The edge labelled
‘nsubjpass’ denotes the ‘passive nominal subject ’ dependency
- a passive nominal subject is a noun phrase which is the
syntactic subject of a passive clause. The dependency rela-
tion is captured by Stanford Parser as - nsubjpass(opened,
account). The word ‘account’ is dependent on ‘opened’(gov-
ernor) being the subject in passive form. A detailed descrip-
tion of all the relations in dependency tree can be found in
Stanford Dependency manual [11].

Rule Rule Intents
Sentence
rs1 (ri1) isAnonymous(name)

(ri2) isFictitious(name)

(ri3) ¬doOpen(account, in name)

rs2 (ri4) isOrdering(bank)

(ri5) furnish(information, remitter)

(ri6) fails(bank, furnish(information, remitter))

(ri7) terminating(relationship[business],with bank)

(ri8) restricting(relationship[business],with bank)

(ri9) consider(bank[beneficiary],terminating (re-
lationship [business], with bank relation-
ship [business], with bank))

rs3 (ri10) isFresh(proof)

(ri11) isMentioned(address, per proof)

(ri12) undergoes(address, change)

(ri13) is-of(proof, address)

(ri14) doSubmit(proof, branch)

(ri15) is-of(period, months([six]))

rs4 (ri16) is-of(customer, address)

(ri17) verify(bank, address)

(ri18) verify(bank, identity)

Table 3: The rule intents for the rule sentences rs1,
rs2, and rs3

Our approach uniquely contributes by defining a set of
rules to extract basic propositional rule intents from rules
sentences by analysing the corresponding dependency trees.
Typically the combination of verb, noun, adjective makes a
propositional rule intent.

The rule intent is formally expressed as R(S,H,A) where-

S - is the string representing the predicate of the intent.

H - is the head word. The main word of the dependence
tree which creates the rule intent becomes the head-
word of the extracted rule intent.

A - is the collections of arguments. Each argument in A
has two attributes. 1) ‘value’ of the argument and 2)
‘role’ of the argument. The attribute ‘role’ of a argu-
ment tries to capture the association of the attribute
with the concerned rule intent. The ‘role’ can hold
following values:

(1) subject - marks the argument as subject.

(2) object - marks the argument as object.

(3) pSubject - marks the argument as prepositional
subject.

(4) pObject - marks the argument as prepositional
object.

(5) objective - when a rule intent become argument
to another then the role of the previous one is
marked as argument. The earlier argument is
marked as objective.

The following notations are used for describing the rules.
The ‘p’ denotes a parent node, ‘c’ denotes a child node, ‘gp’
denotes grand-parent node. The string value of a node (n)
in the tree can be retrieved by accessing the word attribute
(n.word). A ‘∗’ in ‘R(S,H,A)’ means it is either unchanged
or not handled with in the rule. An edge between p and c
is denoted as edgename(p, c). For example, the nsubj(p, c)
denotes that an edge from p (governor) to c(dependent)
labelled nsubj.

The heuristic rules are grouped according to edges of the
dependency tree of the rule intents. These groups are de-
scribed in the subsequent sub sections.

4.1.1 Subject/Object Rules
The subject/object rules are the most primitive rules. These

rules are applied first, before any other rules. These primi-
tive rules (R1 to R8) are described below.

∀ci nsubj(p, ci)→
R(p.word, p, {a}) where
a.value = ci ∧ a.role = subject if : i = 1

R(∗, p, A ∪ {a}) where
a.value = ci ∧ a.role = subject if : i > 1

(R1)

∀ci nsubjpass(p, ci)→
R(‘do’ + p.word, p, {a}) where
a.value = ci ∧ a.role = object if : i = 1

R(∗, p, A ∪ {a}) where
a.value = ci ∧ a.role = object if : i > 1

(R2)

∀ci dobj(p, ci)→
R(p.word, p, {a}) where
a.value = ci ∧ a.role = object if : i = 1

R(∗, p, A ∪ {a}) where
a.value = ci ∧ a.role = object if : i > 1

(R3)

∀ci amod(p, ci)→ R(‘is’ + c.word, p, {a})
∧(a.value = ci ∧ a.role = subject)

(R4)

∀ci agent(p, ci)→
R(p.word, p, {a}) where
(a.value = ci ∧ a.role = subject) if : i = 1

R(∗, p, A ∪ {a}) where
(a.value = ci ∧ a.role = subject) if : i > 1

(R5)

∀ci acomp(p, ci)→
R(p.word+ c.word, p, {a}) where
(a.value = ci ∧ a.role = object) if : i = 1

R(∗, p, A ∪ {a}) where
(a.value = ci ∧ a.role = object) if : i > 1

(R6)

rcmod(gp, p)→ R(∗, p, {a})∧
(a.value = gp ∪ a.role = object)

(R7)

99

vmod(gpi, p) ∧ postag(p, ‘verb’) ∧ @aux(p, ‘TO’)→
R(‘is’ + p.word, p,A ∪ {a})∧

(a.value = gpi ∧ a.role = object)

(R8)

Consider the rule sentence (rs1) from Table 3, the corre-
sponding dependency tree is shown in Figure 2. The pred-
icate doOpen (open as headword) with ‘account’ as an ar-
gument is extracted by applying rule R2. The ‘account ’ is
dependent on open with a dependency relation ‘nsubjpass’
(nsubjpass(opened, account)). Consider the ‘amod ’ edge,
the predicates ‘isFictitious(name)’ and ‘isAnonymous(name)’
are created by applying rule R4 with head word ‘name’.
The concept of headword is borrowed from the Named En-
tity Recognition (NER) [32, 27] and Relation Extraction
(RE) [17, 15, 21]. The headword in each propositional rule
intent is used in other group of heuristic rules.

4.1.2 Prepositional Rules
Prepositional edges are denoted as prep ‘x’ (p, c) where ‘x’

is the preposition that is used. The semantic meaning of the
phrase that uses the preposition depends on the word at p,
c, and on the preposition. The following are the rules that
handle the preposition edges.

∀ci prep ‘x’(p, ci) ∧ postag(p, ‘verb’) ∧ postag(ci, ‘noun’)→
R(p.word, p, {a})∧
(a.value = ci ∧ a.role = pObject) if : i = 1

R(∗, p, A ∪ {a})∧
(a.value = ci ∧ a.role = pObject) if : i > 1

(R9)

∀ci prep ‘x’(p, ci) ∧ postag(p, ‘verb’) ∧ postag(ci, ‘adjective’)→
R(p.word, p, {a})∧
(a.value = ci ∧ a.role = pObject) if : i = 1

R(∗, p, A ∪ {a})∧
(a.value = ci ∧ a.role = pObject) if : i > 1

(R10)

prep ‘x’(p, ci) ∧ postag(p, ‘noun’) ∧ postag(ci, ‘noun’)→
R(‘is x’, p, {a1, a2}) ∧ (a1 = p ∧ a1.role = pSubject)

∧(a2.value = ci ∧ a2.role = pObject)
(R11)

prep ‘x’(p, ci) ∧ postag(p, ‘adjective’) ∧ postag(ci, ‘noun’)→
R(‘is p.word x’, p, {a}) ∧ (a.value = ci ∧ a.role = pObject)

(R12)
Consider the rule sentence rs1 from Table 3 and corre-

sponding dependency tree in Figure 2. We applied the prim-
itive rule R2 and identified a rule intent ‘doOpen(account)’.
But the word ‘open’ has a ‘prep in’ edge to ‘name’. The
meaning conveyed by the edge is - ‘account is opened in
name’. The ‘prep in’ edge connects a verb (open) to a noun
(name). On applying R9, the rule intent is modified as
‘doOpen(account, in name)’ where ‘(name)’ is the prepo-
sitional object of the rule intent.

Consider rs3 from Table 3, the nodes ‘proof of address’,
‘proof ’ have a ‘prep of’ edge to ‘address’ where the words
‘proof ’ and ‘address’ are nouns. A new rule intent is cre-
ated with governor as headword. This rule intent has both
governor and dependent as arguments. Argument governor
is added as prepositional subject and dependent is added
as prepositional object. The predicate is built by append-
ing the preposition with ‘is-’. The phrase ‘proof of address’

from rs3 of Table 1 is created as ‘is-of (proof, address)’ using
rule R11.

4.1.3 Objective Rules
The objective rules are meant for handling special situa-

tion where a rule intent can be argument to another. For
example, consider “...bank fails to furnish information on
the remitter,...”, a segment of rule sentence rs2 for illus-
tration. The corresponding dependency tree is shown in
Figure 3. The objective ‘furnish information on remitter’
is accomplished by ‘bank fails’. The appropriate rule intent
for this statement can be represented as - ‘fails(bank, fur-
nish(information, on remitter))’.

. . . bank fails to furnish information on the remitter, . . .

nsubj
xcomp dobj

prep on

Figure 3: Dependency tree for segment of rs2

∀ci xcomp(p, ci) ∧ ∃R(S, ci, A) ∧ ∃R(S′, p, A′)→
R(S′, p, A′ ∪ {ai})∧

(ai.value = R(S, c, A) ∧ ai.role = objective)

(R13)

∀ci ccomp(p, ci) ∧ ∃R(S, ci, A) ∧ ∃R(S′, p, A′)→
R(S′, p, A′ ∪ {ai})∧

(ai.value = R(S, c, A) ∧ ai.role = objective)

(R14)

∀ci vmod(p, c) ∧ ∃R(S, c, A) ∧ ∃aux(p, ‘TO′))∧
∃R(S′, p, A′)→ R(S′, p, A′ ∪ {ai})∧

(ai.value = R(S, c, A) ∧ ai.role = objective)

(R15)

In above example, the rule R13 is applied as a depen-
dency exists for two verbs (fails, furnish) with xcomp. In
this case, the dependency tree is traversed in level-order
fashion and relevant primitive rules (R1, R3) and preposi-
tional rule (R9) are applied before rule R13. As a result the
rule intent ri5 will be added as an argument to rule intent
‘fails(bank)’(ri6).

4.1.4 Split Rules
The split rules are applicable in scenario where the rule

intent has more than one subject or object. Consider the
sentence rs4 from the example sentences, the dependency
tree is shown in Figure 4. The subject/object rules R1 and
R3 are applied to get the predicate ‘verify(bank, identity,
address)’. Ideally, the above predicate should be split into
‘verify(bank, identity)’ and ‘verify(bank, address)’ to make
it more meaningful. The following rules are applied to han-
dle above scenarios.

Bank should verify identity and the address of the customer.

nsubj

aux
dobj

dobj

prep of
conj and

det det
Figure 4: Dependency tree for rs4

100

. . . beneficiary bank should consider restricting or even terminating its business relationship with the ordering bank .

nn

aux

nsubj

ccomp

ccomp

conj or
prep with

dobj

nn

amod

det
Figure 5: Dependency tree for segment of rs2

let { Arolek ⊂ A | ∀i, j ai, aj ∈ Arolek ∧ (ai.role ≡
aj .role ≡ rolek) where i 6= j }, then-

if R(S,H,A) ∧ (|Arolek | ≥ 2), then ∀a ∈ Arolek

(R(S,H,Aa)
∣∣∣Aa = ({a} ∪ (A−Arolek))

(R16)

For sake of simplicity we are not considering ‘pSubject’ and
‘pObject’ arguments for splitting.

There exists a scenario where a new rule intent is created
out of an existing one. In this scenario, two verbs are con-
nected with a ‘conjunction’ edge and they share common
argument in the sentence. The common argument, which
may be a word or phrase (which creates the argument), is
attached to any one of the verb in the dependency tree. The
other verb is overlooked simply because of being deprived
of having a proper edge (edge other than ‘conj ’ edge). To
illustrate, consider the phrase a segment of rs2 and corre-
sponding dependency given in Figure 5. In this, ‘restricting ’,
‘terminating ’ are connected with edge ‘conj or ’. ‘Conjunc-
tion’ edges are denoted by ‘conj <x>’ where ‘x ’ is that par-
ticular conjunction. In the example, the ‘or ’ conjunction is
used and both the verbs share the same argument. Though
‘relationship’ and ‘bank ’ are directly connected to ‘termi-
nating ’, they are not directly connected with ‘restricting ’.
Hence the node with ‘restricting ’ will not satisfy any of the
rules R1-R15. An ideal rule intent ‘terminating(with bank,
relationship)’ is preferred.

∀ci conj ‘x’(p, ci) ∧ postag(p, ‘verb’) ∧ postag(ci, ‘verb’)∧
(∃r | r ∈ {p, ci} , degree(r) ≯ 1) ∧ ∃R(S, {p, ci} − r,A)→

R(r.word, r, A)
(R17)

The rule intent ‘restricting(with bank, relationship)’ can be
extracted on applying R17. If an edge conj ‘x’ (p, ci) exists
then a node r is chosen from {p, ci} with which a rule in-
tent can not be created. In the earlier scenario, the word
‘restricting ’ is chosen and a rule intent with this node r cre-
ated by copying the arguments from a node other than r
from {p, ci}.

4.1.5 Negation Rule

neg(p, c) ∧ @R(S, p,A)→ R(null, p, φ)∧
markNegate(R(null, p, φ))

(R18)

Now let R = {R(S′, gp, A′) | gp is parent of p}

markNegate(R(null, p, φ)) ∧ ¬postag(p, ‘verb’)

∧R 6= φ→ ∀r ∈ R markNegate(r)
(R19)

neg(p, c) ∧ ∃R(S, p,A)→ markNegate(R(S, p,A)) (R20)

The negation rules (R18-R20) handles the ‘neg ’ edge and
marks a rule intent in negated form by using the function

‘markNegated’. These rules also check whether there exists
any rule intent with source of the neg edge as head. If exists
then the rule intent is marked as negated (R20). If there is
no rule intent with the source then a dummy rule intent is
created with a null as predicate and argument (R18). The
rule R19 is applied to handle dummy rule intents after cre-
ating rule intents from all other nodes by applying rules
R1-R17. The rule R19 checks for the existence of rule intent
with the grand parent word as head and marks that rule
intent negated. All the dummy intents will be discarded at
the end. Consider the dependency tree in Figure 2, the ‘neg ’
edge between ‘account ’ to ‘No’ create a dummy rule intent
with ‘account ’. The parent of ‘account ’ is ‘opened ’ and there
exists a rule intent ‘doOpen(account,in name)’. The intent
is marked as ‘¬doOpen(account,in name)’ by applying R19.

The rules R1-R20 are applied by traversing the depen-
dency tree in level-order. This is done to have the knowl-
edge of the children before processing any parent. These
heuristics driven rules are based on the edges as defined in
the dependency tree (of Stanford parser), and may need to
be extended further to cover all possible edges.

5. EXPERIMENT AND RESULTS
In this section, we discuss the technologies used in the im-

plementation of our prototype system, the time complexity
of the implementation, the experimental studies conducted.
In the end, we also discuss about observations during the
experimentation and the limitations of our approach.

5.1 Implementation
We used Stanford coreNLP parser [11] for parsing the rule

sentences, POS tagging, and for creating the dependency tree.
We implemented RIE using heuristic rules defined in Sec-
tion 4.2. We built a prototype tool to integrate the above
phases. We built this as an eclipse plug-in and as a part of
the tool BuRRiTo [9]. We experimented our prototype tool on
Windows 7 machine with COREi5 processor and 2 GB RAM.
A snapshot of the tool [9] with SBVR vocabulary from sen-
tence rs1 and rs4 is given in Figure 7. Our approach is
helpful to provide this kind of output from rule sentences
in natural language. Terms and simple facts presented in
the editor (e.g. line no 1-6 or 11-27) are generated from the
knowledge extracted by our RIE technique. However some
human intervention is required to edit the extracted facts to
make them correct for further processing.

5.2 Experimental Study
We evaluated our prototype with two sets of subjects:

1. Know Your Customer (KYC) document.
The KYC document consists of guidelines for banks about
collecting various details of their customer in conduct-
ing their business. The training set consists of KYC

101

The drop-off branch of a rental, need not be the return branch of the rental.

nsubj

neg

cop

det

nn

prep of

det

amod
prep of

amod
det

det

Figure 6: Dependency tree of ‘The drop-off branch of a rental need not be the return branch of the rental.’

Figure 7: Screenshot of BuRRiTo guided by RIE.

guidelines taken from Reserve Bank of India (RBI) KYC
guideline document [3] The set comprised of 630 sen-
tences, out of them 185 sentences were marked as non-
rule or non-relevant sentences.

2. EU-RentACar.
we also used requirements for a fictitious car rental
company EU-RentACar [1]. The contents of this doc-
ument has 71 rule sentences.

In evaluating our approach, we measured the efficacy on
the basis of two parameters 1) recall, and 2) precision. The
Recall is defined as the ratio of number of True Positive
Instances (TPI) detected to the number of Actual Positive
Instances (API) is shown in 1.

recall =
|TPI|
|API| (1)

The precision is defined as ratio of number of TPI to the
total number of TPI and False Positive Instances (FPI) is
shown in 2.

precision =
|TPI|

|TPI|+ |FPI| (2)

The efficacy of RIE is measured for recall and precision
with (1) and (2). A single rule sentence may have more
than one rule intent. We used sentences from KYC guide-
lines of RBI and business rule document of EU-RentACar
case study. Efficiency of RIE depends on the structure of
the sentences because these sentences may consists of more
than one clause. A typical example for a complex structure
consisting of clauses and conjunctions is shown in Table 4.

The sentences from EU-RentACar case study are simple

“In case of transactions carried out by a walk-in cus-
tomer, where the amount of transaction is equal to or
exceeds rupees fifty thousand, whether conducted as a sin-
gle transaction or several transactions that appear to be
connected, the customer’s identity and address should be
verified.”.

Table 4: Example complex sentence.

and it clearly reflects in the result shown in Table 5 .
Figure 8 and 9 shows the usage pattern of the heuris-

tics rules. The Subject/Object category rules are the most

102

63.8%
27.7%

4%
1.3%

3.2%
SubjectObject

Prepositional Rule

Objective Rule

Split Rule

Negation Rule

SubjectObject Prepositional Objective Split Negation
0

50

100

150

200

250

300

350

319

140

15
7

1723
9

21

0

21
3 5 1 2

27

Correct Wrong Missed

Figure 8: Eu-RentAcar Study:Pie chart shows overall usage pattern(left). Bar chart shows experimental
results

59.35%
29.27%

7.2%
2.05%

2.13%

SubjectObject

Prepositional Rule

Objective Rule

Split Rule

Negation Rule

SubjectObject Prepositional Objective Split Negation
0

200

400

600

800
809

399

98

28 29
72

26 19 2 113.5 16.5 7 13 1

Correct Wrong Missed

Figure 9: KYC Study:Pie chart shows overall usage pattern(left). Bar chart shows experimental results

Subject Recall Precision
KYC document simple sentences 0.8108 0.7834

EU-RentACar Sentences 0.78 0.76
KYC document complex sentences 0.557 0.5114

Table 5: Result of Rule Intent Extraction

frequently used rules in our experimentation. The second
most used rule category is preposition rules. The errors in
Subject/Object rule group is primarily contributed by R4.
The words like ‘other’, ‘due’ have created spurious rule in-
tents ((e.g. isOther (customer), isDue(diligence) etc.)). The
presence of pronouns made Subject/Object rules to detect
incorrect subjects and objects.

These pronouns occur with valid edges like nsubj, dobj.
In some scenarios, the pronouns occur as only child with a
valid edge. In those scenarios, ignoring the pronouns may
lead to the loss of rule intent. The co-reference resolution
is required to overcome such scenarios. The structure of
a rule sentence has contributed to errors that are caused
by prepositional rules. Consider the sentence given in Fig-
ure 6, the rule intent ‘is-of (branch,need)’ is extracted by us-
ing rule R11. For same sentence when Subject/Object rules
followed by Negation rules are applied, extract a wrong rule
intent of the form ‘¬branch(branch)’. In the rule intent, the
‘branch’ is extracted from the word at twelfth position of
the sentence and argument ‘branch’ is extracted from third
position from the same sentence.

5.3 Limitations
The NL sentences pose a big challenge as a sentence can be

expressed in several ways. The NL sentences can be simple
(with only one clause), complex (having multiple clauses).
The variations in way of interleaving clauses elicit our heuris-
tic rules to be enriched enough to handle such sentences. A
typical example of a complex sentence is shown in Table 4.
Our approach performs well in case of simple sentences and
sentences with non-interleaving clauses. A trivial change in
usage of punctuation mark may change the structure of the
dependency tree as shown in Figure 10 and 11. As a con-
sequence from the tree of Figure 10 in, we get a rule intent
like ‘use(Banks, for verification, evidence)’. We also get an-
other rule intent from the tree in Figure 11 as ‘use(Banks,
evidence)’. Our method has shown promising results when
the rule sentences are syntactically and semantically correct.

Sentences can also be formed by interleaving clauses in
more than one ways. Sentences with same semantic meaning
but being syntactically of different structures give different
dependency trees. So rule intents extracted from these sen-
tences may differ in their form. We need to come up with
some procedure to normalize either in sentence space or in
rule intent space to get congruent result from sentences with
same semantic meaning. Consider, for example, rule sen-
tence rs4 table 3 and a slight variation of the same can be-
‘Bank needs to verify identity and the address of the

customer.’ From the later one we will have rule-intent of
the form ‘needs(bank, verify(address))’. This rule-intent se-
mantically equivalent to ri17.

103

Bank can use any supplementary evidence, such as a letter received through post, for further verification of the address.

aux

det

amod
prep such as prep through

amod

prep of

nsubj dobj

prep for

det
vmod det

Figure 10: Dependency tree of an example with punctuation mark ‘,’ after ‘evidence’.

Bank can use any supplementary evidence such as a letter received through post for further verification of the address.

aux

det

amod
prep such as prep through

amod

prep of

nsubj dobj prep for
det

vmod det

Figure 11: Dependency tree of an example without punctuation mark ‘,’.

6. FUTURE WORK
During the experimentation, we made numerous observa-

tions for improving and extending our approach. Few of
them are:

• We would like to handle complex and compound sen-
tences. We plan to extend the approach 1) by using
dependency parser with newer patterns, 2) by creat-
ing more rules on processing dependency tree, and 3)
The simplification of a complex / compound sentences
may be done in couple different ways: 1) A complex
sentence can be summarized into a single fact (rule in-
tent). 2) A complex sentence can be broken into simple
sentences by keeping proper note of how they are re-
lated. We plan to explore either of these strategies for
further experimentation.

• We have made progress to extract basic facts and to
some extent the vocabulary. To make them perfect
we are delving with neamed- entity recognition tech-
niques. To represent the facts as a business rule and
to qualify them for further processing we are inves-
tigating mining relationship among those facts. This
relationship can be of two types- intra-sentence and
inter-sentences.

• Co-references within and across sentences is a major
issue to be handled. For example, consider the sen-
tence “Circumstances, in which a customer is permit-
ted to act on behalf of another person entity, should
be clearly spelt out”.The word ‘Circumstances’ refers
to the situation under which ‘a customer is permitted
to act on behalf of another person entity ’. This is an
example of co-reference in a sentence. The sentence
“In the case of cross-border customers, there is the ad-
ditional difficulty of matching the customer with the
documentation and the bank may have to rely on third
party certification. In such cases, it must be ensured
that the third party is a regulated and supervised entity
and has adequate KYC systems in place.”, is a similar
co-reference example but spread over more than one
sentence. In the second sentence ‘such cases’ refers to
the situation described in the first sentence.

• We plan to convert the propositional form of the rule
intents in SBVR format. The SBVR is a well-known for-

mat in representing the business rule. It enables to
do certain kinds of reasoning with the business rules.
We are currently made some progress to extract vo-
cabulary associated with rule-intents and express rule-
intents in a format close to SBVR.

• Based on our knowledge and exploration, we have not
found relevant data sets or benchmarks. We plan to
create a exhaustive annotated data set as benchmark.

7. CONCLUSION
The larger objective of our work is to extract formal busi-

ness rules (and processes) by analysing requirements docu-
ment, guidelines and do’s and don’ts documents. To achieve
the objective, we split the problem into multiple parts. The
rule intent extract is one of these identified problems. This
current work of ours focuses on the extraction of rule intents.
Depending upon the heuristics that are independent of the
business domain, we extracted the business intents from the
sentences. We have to experiment with many more doc-
uments to establish the adequacy of the heuristics, which
we may parametrize in the long run. Our experiments with
openly available documents and subsequent improvements in
the methods yielded promising results in terms of the mea-
sures of precision, recall and accuracy. The above success
give us enough motivation to move further towards express-
ing the rules using a formal notation such as SBVR, and var-
ious improvement and extensions to the techniques to make
them useful for industry application.

8. REFERENCES
[1] EU-RentACar case study. http://www.

businessrulesgroup.org/first paper/br01ad.htm.
[Online; accessed 18-April-2016].

[2] Object Management Group(OMG).
http://www.omg.org. [Online; accessed
29-September-2015].

[3] Reserve Bank of India (RBI), Master Circulars.
https://rbi.org.in/scripts/BS ViewMasCirculardetails.
aspx/?id=9031. [Online; accessed 18-April-2016].

[4] Semantics Of Business Vocabulary And Rules
(SBVR). http://www.omg.org/spec/SBVR/. [Online;
accessed 29-September-2015].

104

[5] J. Atkinson-Abutridy, C. Mellish, and S. Aitken.
Combining information extraction with genetic
algorithms for text mining. IEEE Intelligent Systems,
19(3):22–30, May 2004.

[6] I. S. Bajwa, M. G. Lee, and B. Bordbar. SBVR
business rules generation from natural language
specification. In AI for Business Agility, Papers from
the 2011 AAAI Spring Symposium, Technical Report
SS-11-03, Stanford, California, USA, March 21-23,
2011, 2011.

[7] B. K. Boguraev. Towards finite-state analysis of lexical
cohesion. In Proceedings of the 3rd international
conference on finite-state methods for NLP, 2000.

[8] C. C. Chiang. Extracting business rules from legacy
systems into reusable components. In 2006
IEEE/SMC International Conference on System of
Systems Engineering, pages 6 pp.–, April 2006.

[9] P. K. Chittimalli and K. Anand. Domain-independent
method of detecting inconsistencies in sbvr-based
business rules. In Proceedings of the International
Workshop on Formal Methods for Analysis of
Business Systems@ASE 2016, pages 9–16. ACM, 2016.

[10] F. Ciravegna. Adaptive information extraction from
text by rule induction and generalisation. In
Proceedings of the 17th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’01, pages
1251–1256, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[11] M.-C. De Marneffe and C. D. Manning. Stanford
typed dependencies manual. Technical report,
Technical report, Stanford University, 2008.

[12] A. B. Earls, S. M. Embury, and N. H. Turner. A
method for the manual extraction of business rules
from legacy source code. BT Technology Journal,
20(4):127–145, Oct. 2002.

[13] C. J. Fillmore. The case for case, dins. In E. Bach and
R. Harms, editors, Universals in Linguistic Theory.
Holt, Rinehart, and Winston, 1968.

[14] S. Ghaisas, M. Motwani, and P. Anish. Detecting
system use cases and validations from documents. In
Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, pages
568–573, Nov 2013.

[15] Z. GuoDong, S. Jian, Z. Jie, and Z. Min. Exploring
various knowledge in relation extraction. In
Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 427–434, Stroudsburg, PA, USA, 2005.
Association for Computational Linguistics.

[16] H. Huang. Business rule extraction from legacy code.
In Proceedings of the 20th Conference on Computer
Software and Applications, COMPSAC ’96, pages
162–, Washington, DC, USA, 1996. IEEE Computer
Society.

[17] N. Kambhatla. Combining lexical, syntactic, and
semantic features with maximum entropy models for
extracting relations. In Proceedings of the ACL 2004
on Interactive Poster and Demonstration Sessions,
ACLdemo ’04, Stroudsburg, PA, USA, 2004.
Association for Computational Linguistics.

[18] I. Muslea et al. Extraction patterns for information
extraction tasks: A survey. In The AAAI-99

Workshop on Machine Learning for Information
Extraction, volume 2, 1999.

[19] T. Nasukawa and T. Nagano. Text analysis and
knowledge mining system. IBM Systems Journal,
40(4):967–984, 2001.

[20] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar. Inferring method specifications from
natural language api descriptions. In Proceedings of
the 34th International Conference on Software
Engineering, ICSE ’12, pages 815–825, Piscataway,
NJ, USA, 2012. IEEE Press.

[21] S. Pawar, P. Bhattacharyya, and G. K. Palshikar.
Semi-supervised relation extraction using em
algorithm. https:
//www.cse.iitb.ac.in/˜pb/papers/icon13-ie-em.pdf,
2014.

[22] E. Putrycz and A. W. Kark. Rule Representation,
Interchange and Reasoning on the Web: International
Symposium, RuleML 2008, Orlando, FL, USA,
October 30-31, 2008. Proceedings, chapter Connecting
Legacy Code, Business Rules and Documentation,
pages 17–30. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[23] L. R. Rabiner and B.-H. Juang. An introduction to
hidden markov models. ASSP Magazine, IEEE,
3(1):4–16, 1986.

[24] C. Rolland and C. B. Achour. Guiding the
construction of textual use case specifications. Data
Knowl. Eng., 25(1-2):125–160, Mar. 1998.

[25] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev.
A linguistic analysis engine for natural language use
case description and its application to dependability
analysis in industrial use cases. In Dependable Systems
Networks, 2009. DSN ’09. IEEE/IFIP International
Conference on, pages 327–336, June 2009.

[26] H. M. Sneed. Extracting business logic from existing
cobol programs as a basis for redevelopment. In
Program Comprehension, 2001. IWPC 2001.
Proceedings. 9th International Workshop on, pages
167–175, 2001.

[27] N. Sobhana, P. Mitra, and S. Ghosh. Conditional
random field based named entity recognition in
geological text. International Journal of Computer
Applications, 1(3):143–147, 2010.

[28] C. Wang, Y. Zhou, and J. Chen. Extracting prime
business rules from large legacy system. In Computer
Science and Software Engineering, 2008 International
Conference on, volume 2, pages 19–23, Dec 2008.

[29] X. Wang, J. Sun, X. Yang, Z. He, and S. Maddineni.
Business rules extraction from large legacy systems. In
Software Maintenance and Reengineering, 2004.
CSMR 2004. Proceedings. Eighth European Conference
on, pages 249–258, March 2004.

[30] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie.
Automated extraction of security policies from
natural-language software documents. In Proceedings
of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, FSE ’12,
pages 12:1–12:11, New York, NY, USA, 2012. ACM.

[31] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
resource specifications from natural language api
documentation. In Proceedings of the 2009

105

IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, pages 307–318,
Washington, DC, USA, 2009. IEEE Computer Society.

[32] G. Zhou and J. Su. Named entity recognition using an
hmm-based chunk tagger. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 473–480, Stroudsburg, PA,
USA, 2002. Association for Computational Linguistics.

106

