
SBVR-based Business Rule Creation for Legacy Programs using
Variable Provenance

Pavan Kumar Chittimalli
TRDDC, TCS Research

Pune, India
pavan.chittimalli@tcs.com

Abhidip Bhattacharyya∗
University of Colorado Boulder

Boulder, CO, USA
abhidip.bhattacharyya@colorado.edu

ABSTRACT
Functionality of a software system that implements business op-
erations can be captured using business processes and rules. To
understand the ‘as-is’ processes and rules, the source-code is ar-
guably the best source of knowledge. We present a novel method
that combines program analysis and domain knowledge to create
the descriptions for “IT rules”, as a critical step towards extracting
business rules automatically. We introduce and use the concept
of ‘variable provenance’ to propagate the domain descriptions into
the source code to create Semantics of Business Vocabularies and
Rules (SBVR) rules. In our experiments on sample, near-real-life
systems, we could successfully annotate very large percentage (>
90%) of IT rules and enable to create SBVR rules. We present and
describe the ProgAnnotator tool which is based on variable prove-
nance and generates descriptions for IT rules in the source code
and subsequently create SBVR rules automatically.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Specification languages;

KEYWORDS
Business Rule Extraction, Static Program Analysis, Variable Prove-
nance, Rule Annotation, SBVR

ACM Reference Format:
Pavan Kumar Chittimalli and Abhidip Bhattacharyya. 2019. SBVR-based
Business Rule Creation for Legacy Programs using Variable Provenance. In
Proceedings of 12th Innovations in Software Engineering Conference (formerly
known as India Software Engineering Conference), Pune, India, February 14–16,
2019 (ISEC’19), 11 pages.
https://doi.org/10.1145/3299771.3299786

1 INTRODUCTION
Organizations today are facing numerous challenges with their IT
systems for the ability to adapt to changing business environments,

∗Author has done this work while he was working in TRDDC. He is currently pursuing
his PhD at University of Colorado Boulder.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISEC’19, February 14–16, 2019, Pune, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6215-3/19/02. . . $15.00
https://doi.org/10.1145/3299771.3299786

providing integrated multichannel and personalized user experi-
ence. The business structure, policies, and strategies change over
a time-period in response to the market conditions and external
regulatory reasons. Business system transformation is a process
of adjusting the business activities and the IT systems that auto-
mate them to accommodate the above changes. In addition, these
legacy systems may also require changes in order to respond to
changing business environment, i.e., competition, superior business
products and services, and preparing for merger and acquisition
(M&A) activity. Such changes may include replacing, re-developing,
or refactoring the existing information systems and often termed
as IT transformation.

Business rules are extracted from the source code [17], [20], [9],
[21], [12], an activity performed as part of IT system transforma-
tion, largely manually. The rules extracted from source code are
mostly code snippets that implement the business rules; we refer
to such code snippets as IT rules. The identified pieces of code may
denote complex flows in the system [12], consisting of variables
with cryptic names and perform specific operations defined by the
business. The comprehension of such code pieces that denote IT
rules helps in understanding the constraints and calculations in the
IT system that implement business functionality. The knowledge of
the constraints and the calculations for specific business contexts,
if expressed using domain vocabulary, can provide vital inputs for
IT system transformation or understanding the as-is systems. In
industry, most of these activities are manual, time, and resource
consuming, though aided by tools. The currently used manual prac-
tice makes this activity extremely tedious as it involves keeping
track of several variables, database tables and the complex flows
between them.

Business systems are usually data centric and transaction based.
The flow of data in such systems is cryptic in nature. It starts
from the database or screens and flows through a maze of software
processes/procedures, getting transformed at multiple places, trig-
gering creation of many other data-items during its journey, and
finally residing in the database and/or the screen. To understand the
provenance of the output data, it is critical to understand the above
flow, thus making it important to understand the transformation of
the data in every process/procedure [3], [5], [8]. This is extremely
resource consuming, if done manually. Therefore, we have adapted
the concept of variable provenance [11] in the context of a software
process or procedure [14]. The variable provenance is informally
defined as some text that describes the data held by a variable. If
the provenances of all variables in a procedure are known, they can
be combined using program analysis techniques to construct the
conceptual relation between output and input data (represented by

https://doi.org/10.1145/3299771.3299786
https://doi.org/10.1145/3299771.3299786
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299771.3299786&domain=pdf&date_stamp=2019-02-14

ISEC’19, February 14–16, 2019, Pune, India P. Chittimalli et al.

corresponding variables). Such conceptual relations are the basis
for identifying and constructing business rules.

The Program Annotator tool is an Eclipse Plug-in, which gen-
erates descriptions for variables and statements of programs auto-
matically from the available descriptions of entities and attributes
of the persistent data like database schema, file records, and i/o
records. We use static data-flow and control-flow analysis tech-
niques to propagate descriptions of multiple variables in the source
code. The tool computes the descriptions for conditional expres-
sions by using the operational rules associated with mathematical
and logic operators in the conditional expressions. The tool displays
the descriptions as annotations when the user hovers the mouse
on statements/variables of interest and it also enables users to edit
the descriptions. Once the user validates approves the generated
descriptions, we use technique [7] to generate the SBVR rules and
vocabularies. These rules can be further used for verification and
validation [10].

The main contributions of this paper are:

• Adapting the novel concept of variable provenance that ac-
curately computes the descriptions of variables, expressions
and statements.
• Creates the SBVR rules for the generated annotations.
• A prototype tool that implements the concept of variable
provenance, and integrates with Eclipse as Plug-in.
• A set of empirical studies that show the effectiveness of the

technique.

The paper is organized as follows: The Sect. 2 describes the motivat-
ing example for creating IT rules and Business rules using variable
provenance technique. The Sect. 3 describes the detailed approach
of variable provenance, statement annotation, combining them to
create IT rules, and creating SBVR rules. The Sect. 4 describes the
ProgAnnotator tool implementing the approach and experimental
studies, The Sect. 5 describes the related work, and Sect. 6 describes
the conclusions and challenges involved.

2 MOTIVATING EXAMPLE
In this section, we illustrate the concept of variable provenance and
its application towards creating the IT rules using sample code
fragment shown in Fig. 1. The code fragment is part of a money
transfer module in a bank which accepts source account, target
account, amount of transaction and updates the source and target
accounts after the successful transfer of funds. The i/o for the code
fragment is read/written using database (which is not part of the
code fragment shown).

The variables SRC-BALANCE, SRC-AC-ID, SRC-TYPE get their val-
ues from ACCOUNT TABLE, and AMOUNT-TRNDATE gets its value from
TRANSACTION TABLE. These variables are used in various computa-
tions and conditional expressions to calculate the output, depicted
by NEWSBALANCE and NEW-TBALANCE. The descriptions available in
the database denote annotations for the i/o (seed) variables. After
the propagation of annotations from the seed variables to other
variables in the code fragment, the annotations for few, sample
variables as well as sample statements are shown in Fig. 1 as a tool
tip (blob).

The annotation for variable NEW-TBALANCE on line 017700 is
inferred from that of the variable TGT-BALANCE, as per the propa-
gation rule of the addition operator. Thus the annotation “Current
balance of the account” is assigned to variable NEW-TBALANCE and
the description for the statement on that line “Current balance in
the account is computed as Amount is added to Current bal-
ance in the account” is generated. The custom defined generation
of the descriptions are better interpreted and illustrated than fixed
generation format. For example, consider the above statement anno-
tation generated as “Current balance in the account is computed by
adding Amount to Current balance in the account”. Both these gen-
erated descriptions convey the same meaning. The template based
generation can assist such custom defined annotation generation to
reflect the user interpretation (this is explained further in Sect. 3). In
line 016100, the annotation of SRC-ID is copied into LACCOUNT-ID
as per the propagation rule of the assignment operator (explained
in Algo. 3.3).

The descriptions for conditional expressions can be computed
using the variable provenance. For an example at line 015400, the
generated description for the condition expression is “If Amount
of Transaction is greater than Current balance of the account
then”. Similarly, the annotation for line 016300, “Decrease Current
Balance of the account by Amount of Transaction” is generated.

Most of the statements in the program get the annotations at the
end of annotation propagation. It is possible that some statements
(that do not involve any direct or indirect domain variables used
in them) might not get annotations. For example, a loop counter is
unlikely to have annotation and does not result in any descriptions
involving that variable. Usually, all conditional and computational
statements in the source code are annotated with descriptions. The
developer and designer can understand the statements better in
the context of the descriptions of the variables and the statements,
enabling him to create a mental model of the business logic.

To document the business rules that are implemented in the
source code, the analyst looks into the annotations of conditions,
computations and variables, along with program analysis tech-
niques and creates a description of the IT rule using the acquired
mental model of the business logic. For a IT rule that is mapped us-
ing source lines between 015400 to 015900 (which is shown below)
is created by the analyst can look like:

015400 I F AMOUNT > SRC−BALANCE
01540009

015500 MOVE CUSTOMER DOES NOT HAVE SUFFICIENT
BALANCE ' TO 01550009

015600 MESSAGE−STRING
01560009

016000 ELSE
01600009

016300 COMPUTE~NEW−SBALANCE = SRC−BALANCE −
AMOUNT 01630009

017700 COMPUTE~NEW−TBALANCE = TGT−BALANCE +
AMOUNT 01770009

The identified IT rule can be annotated with the statement an-
notations as shown Tab. 1. Such IT rules consisting of domain
terms are easier to comprehend by analysts for taking further de-
cisions regarding IT transformations. These rules can be more
useful for automatic transformations if specified in a machine in-
terpretable formats such as Semantics of Business Vocabulary and

SBVR-based Business Rule Creation for Legacy Programs using Variable Provenance ISEC’19, February 14–16, 2019, Pune, India

Figure 1: Sample COBOL Money Transfer code segment.

Table 1: Sample annotated IT rules shown in the example rules.

Rule Id Created Annotation
Rule-1 If Amount of Transaction is greater than Current balance of the account then

CUSTOMER DOES NOT HAVE SUFFICIENT BALANCE

Rule-2 If Amount of Transaction is not greater than Current balance of the account
then
Decrease Source account balance of the account by Amount of Transaction
and
increase Target account balance of the account by Amount of Transaction

Table 2: SBVR rule for annotated IT rules shown Tab. 1.

Rule Id SBVR Annotated Rules
Rule-1 it is necessary that if amount of transaction is greater than

current balance of account then customer is not having sufficient balance
Rule-2 it is necessary that if amount of transaction is less than current balance of account

then source account is decreased with amount of transaction and target account is
increased with amount of transaction

ISEC’19, February 14–16, 2019, Pune, India P. Chittimalli et al.

Rules (SBVR) [1]. The corresponding SBVR rules created automati-
cally by using our technique [7] is shown in Tab. 2.

3 APPROACH
In this section, we describe our approach of annotating IT rules
using Variable Provenance technique [11] and translating these
IT-Rules into SBVR based business rules using techniques defined
in [7]. Our approach consists of following steps:

(1) Build the Data Descriptions Table (DDT) consisting of
descriptions of database tables, file records, constants used
in the system using the schematic descriptions.

(2) Identify the i/o points in the system which uses the databas-
es/files and build the initial Data Dictionary (DD). The
DDT descriptions flow into the system at i/o points.

(3) We identify the variable provenances by applying data flow
analysis. We identify equivalent sets of variables using the
reaching definitions [3] and the annotation propagation rules
of operators- a heuristic driven approach. The variables in
one equivalent set have values that are of the same kind,
either it is amount, or interest rate, or tax-amount etc.

(4) Compute annotations of statements by using annotations of
individual variables and expressions. These are subsequently
used for constructing the annotations for IT rules.

The detailed approach is shown in Fig. 2 and explained in the
later part of this section.

3.1 Data Description Table (DDT)
The i/o variables (seeds) of the program are the variables which are
external from sources. For example, the database table schema, file
records, constants used in the source code carry external descrip-
tions in a typical business application. In this step, the Intermediate
Representation (IR) of source files generated by program analysis
workbench PRISM [2] and extract descriptions for seed variables.

(1) Table Data Descriptions: The column names of a table and
the corresponding descriptions are taken from the database
schema.

(2) File Data Descriptions: In business applications, the data
files are defined using custom defined structure. The file
structure has definitive meaning to each of the column that
is being stored in them. This information along with descrip-
tions are captured in DDT.

(3) Constants Descriptions: The program may contain con-
stants which hold some values and are used to assign value
to the variables defined in the program. All such constants
are typically stored in tables using maps.

The DDT is formally defined as: DDT = {< f ,v,d >}, where f is
the database table or file type, v is a record-field/constant/database-
column, d is the description associated with the v .

The DDT consists of the database variables (used in the database
statements like CREATE/UPDATE/DELETE/INSERT along with data-
base schema descriptions. It also contains the file handling state-
ments like READ, WRITE uses file records. The schema definitions of
those file records having file-record-fields descriptions are stored
in the description table. Finally the constants that are used in the
program also be stored in DDT using the constant map descriptions.

An example entry in the DDT for a record variable in a FILE as:
< IN-FILE, SRC-AC-ID, “Account Identifier Unique Primary Key” >.
Similarly for a constant ‘S’, the DDT entry will look as:
< NULL, ‘S’,“SAVINGS” >.

3.2 Data Dictionary
The provenance of the variable is stored in data store, we call it Data
Dictionary (DD). The DD is formally defined as: DD = {< v,d ,eq >},
where v is the variable, d is the variable description (annotation),
and eq is number of the equivalence class.

Variables are stored in the data dictionary along with their de-
scriptions and equivalence class number. We have shown the struc-
ture of data dictionary above. The DDT is computed earlier would
be used for initializing the DD as shown in Algo. 3.1. Algorithm 3.1
initializes the entries of DD with -1 as equivalence class for all the
DDT entries.

In the next section, we describe the operational rules associated
with mathematical and logic operators; the heuristics developed
and how data dictionary actually gets updated.

3.3 Variable Provenance Computation
In this section, we describe the algorithms UpdateDD() and Compute-
VariableProvenance(P) to propagate and update data dictionary
the annotations.

The domain variables are input and output points of a business
system. The descriptions of these domain variables are the starting
point for computing variable provenance given in Algo. 3.2. Usually,
the descriptions of such variables are available as meta-data in the
relational databases or file structures. In the Step (1), we create de-
scription tables for the database attributes, the file records, and the
constants using the meta data available (CreateDescriptionTab()).
The user-defined descriptions can be given to those variables for
which the descriptions are not available externally. In Step (2), we
create initial data dictionary (InitializeDD()) using the descrip-
tions table created in Step (1). In DD, all the variables belonging
to the same equivalence class refer and deal with similar or same
data. For an example, we have equivalence classes such as ACCOUNT
BALANCE, ACCOUNT TYPE for variables shown in Figure 1. In Step (3),
we normalize the data dictionary using NormalizeDD(DDT). The
normalization of DD is performed to eliminate the duplicate entries.

In Steps (4-6), we compute domain variables and segregate them
into input and output domain variables. In Steps (7-8), we perform
backward data slice computation (ComputeBackwardDataSlice())
for each output domain variable. We use PRISM [2] data-flow anal-
ysis framework to compute slices. In Step (9-10), we take each
statement from the backward data slice and perform updation of
the Data Dictionary (UpdateDD()). This detailed algorithm is given
in Algo. 3.3.

In Step (11-14), we perform forward data slice computation (Com-
puteForwardDataSlice()). Similar to Steps(7-10), we perform the
updation of DD for statements in the forward data slice. Based
on the heuristics developed from the annotation rules of opera-
tors, descriptions of variables from initial data dictionary flows
through the program slice and new equivalence classes get created
and merged. For an example, consider the statement in Fig. 1 at
line number 016300 COMPUTE NEW-BALANCE = SRC-BALANCE -

SBVR-based Business Rule Creation for Legacy Programs using Variable Provenance ISEC’19, February 14–16, 2019, Pune, India

Figure 2: Block diagram of our approach.

Algorithm 3.1: InitializeDD(DDT)

/*Initializes the Data Dictionary using Description Table DDT*/
(1) DD ← ϕ
(2) ∀dt ∈ DDT
/*Get each description table entry */
(3) < fi ,vi ,di >← dt
/*Initialize each DD equivalence class as -1.*/
(4) dd =< vi ,di ,−1 >
(5) DD ← DD ∪ dd

AMOUNT. In Step (10), the description of the variable SRC-BALANCE
is copied into NEW-BALANCE using Case 2 of the Algo. 3.3. The vari-
ables NEW-BALANCE, SRC-BALANCE, AMOUNT will be put into the
same equivalence class.

We have also defined other set of heuristics based on the as-
signment statements, computational statements (such as var1 =
var2 + CONSTANT, var1 = var2 + / −var3 and many more). At the
end of the algorithm in Step (15), we compute the DD which has
variables along with their descriptions grouped in the meaningful
equivalence classes.

The updation of DD is guided by the operational rules of logi-
cal and computational operators of the computation/assignment
statements. The complete algorithm for updating the DD is given in
Algo. 3.3.

Let lhs be left hand side, rhs be right hand side of assignment
statement s. Let r & l be the variables in rhs & lhs . The Algo. 3.3
depicts all scenarios that could happen in the creation and updation
of equivalence classes.

For complex assignments of the form x = y ⊕ z, where ⊕ can be
any operator involving (+) or (−) or (∗). We have applied simple
heuristic of copying the equivalence class of lhs to rhs. For an
example, Simple Interest = (Principle * Rate of Return
* Duration) / 100. Using our heuristics given, the Principle
and Interest both refer to the “amount”, they can be put together
in one equivalence class referred as Amount.

3.4 Sentence Annotation
The conceptual description of the variables in the program can be
used to enable the end users to better understand how the state-
ments are doing what they are expected to do. Our approach makes
use of the description generated for the variables in the program
using variable provenance technique and generates the statement
level descriptions for the source code lines based on the custom
template provided by the user.

Statement Dictionary (SD) is defined similar to the DD to store
the description of all the statements of the given application. The

ISEC’19, February 14–16, 2019, Pune, India P. Chittimalli et al.

/*Computes the variable provenance for given program P*/

Algorithm 3.2: ComputeVariableProvenance(P)

/*Creates a description Table consisting File/DB/Constant*/
(1) DDT ← CreateDescriptionTab(P)
/*Create and Initialize DD using Algorithm III.1*/
(2) DD ← InitializeDD(DDT)
/*Eliminates duplicates*/
(3) DD ← NormalizeDD(DD)
/*Get input/output domain variables from the program P*/
(4) DV ← GetDomainVar(P)
(5) ODV ← GetOutputDV(DV)
(6) IDV ← GetInputDV(DV)
/*For each o/p domain variable compute backward data slice*/
(7) ∀o ∈ ODV
(8) BSlice ← ComputeBackwardDataSlice(o)
(9) ∀stmt ∈ BSlice
/*Update Data dictionary for that statement*/
(10) UpdateDD(stmt ,DD)
/*For each i/p domain variable compute forward data slice*/
(11) ∀i ∈ IDV
(12) FSlice ← ComputeForwardDataSlice(i)
(13) ∀stmt ∈ FSlice
/*Update Data dictionary for that statement*/
(14) UpdateDD(stmt,DD)
(15) return(DD)

SD is formally defined as: SD = {< s,d >}, where s is the state-
ment in the program, d is the computed statement level description
(annotation).

<method name= " generateMove " >
<arguments >

<argument type = " S t r i n g " name= "@1" / >
<argument type = " S t r i n g " name= "@2" / >

</ arguments >
< r t y p e type = " S t r i n g " / >
<code >

< order >
< i tem type = "@1" / >
< i tem type = " I S ␣MOVED␣ INTO " / >
< i tem type = "@2" / >

</ order >
</ code >

</ method >

Figure 3: Sample template file for Program Annotation.

A sample template file is shown in Figure 3 to provide as a
guidance to generate description for MOVE statements in COBOL.
This sample program takes two arguments represented by “@1”
and “@2”. The tag sequence <order> </order> is used to generate
the description of the statement in selected order. Consider the
example shown in Fig. 4, the descriptions for all MOVE statements in
program are generated using the above mentioned part of template
file and data dictionary that has been built.

Consider the line 012600 in Fig. 4, we get annotations for the vari-
ables L-ACCOUNT-ID and SRC-AC-ID as “Account identifier-Primary

key” and “Source account id” from the data dictionary. The vari-
ables L-ACCOUNT-ID and SRC-AC-ID gets mapped to arguments
“@1” and “@2” respectively. The template defined order is used to
generate the method “generateMove”. The description gets created
as “Account identifier-Primary key IS MOVED INTO Source account
id”. Just as we have method “generateMove()” in our template to
generate descriptions for MOVE statements, we have methods to
generate descriptions for other code constructs.

The statement level annotations are generated using Algo. 3.4
after computation of all annotations of the known variables. Typi-
cally the program contains statements such as assignment (e.g MOVE
statements in COBOL), conditional expressions (If. . .Then. . .), loop
statements (For, While), i/o statements (READ, WRITE). We can
use the descriptions of variables from our data dictionary and the
knowledge about type of the statement to annotate the source lines
of the program. Our approach provides the way to generate the
custom defined descriptions for various code constructs. It takes
a template file and data dictionary; and computes statement de-
scriptions. Template file enlists all the possible types (assignment
statements, conditional expressions, loop expressions, etc.) of state-
ments in the program and what type of description to generate for
the particular statement. As it uses the template file for the descrip-
tion computation, these statement annotations can be generated
on the fly (dynamically).

SBVR-based Business Rule Creation for Legacy Programs using Variable Provenance ISEC’19, February 14–16, 2019, Pune, India

Algorithm 3.3: UpdateDD(s, DD)

/*Updates the Data Dictionary for given assignment statement s*/
r ← RHS (s)
l ← LHS (s)
rhs ←< r , dr , eqr >

lhs ←< l, dl , eql >

case 1

if rhs ∈ DD & lhs < DD & eqr , −1
/*put the lhs description and equivalence class same as rhs*/

then
{
lhs ←< l, dr , eqr >

DD ← DD ∪ lhs

case 2

if rhs ∈ DD & lhs < DD & eqr = −1
/*put the lhs description and equivalence class same as rhs.
We generate new Equivalence class and assign it to both rhs and lhs*/

then

eqnew ← NewEQ ()
rhs ←< r , dr , eqnew >

lhs ←< l, dr , eqnew >

DD ← DD ∪ lhs

case 3

if lhs ∈ DD & rhs < DD & eql , −1
/*put the rhs description and equivalence class same as lhs*/

then
{
rhs ←< r , dl , eql >
DD ← DD ∪ rhs

case 4

if lhs ∈ DD & rhs < DD & eql = −1
/*put the rhs description and equivalence class same as lhs.
We generate new Equivalence class and assign it to both lhs and rhs*/

then

eqnew ← NewEQ ()
rhs ←< r , dl , eqnew >

lhs ←< l, dl , eqnew >

DD ← DD ∪ rhs

case 5

if lhs < DD & rhs < DD
/*put both lhs rhs with null (ϕ) description.
We generate new Equivalence class and assign it to both lhs and rhs*/

then

eqnew ← NewEQ ()
dr , dl ← ϕ
rhs ←< r , dr , eqnew >

lhs ←< l, dr , eqnew >

DD ← DD ∪ rhs
DD ← DD ∪ lhs

case 6

if lhs ∈ DD & rhs ∈ DD & eqr , −1 & eql = −1
/*Change the equivalence class of lhs from -1 to equivalence class of rhs*/

then
{
lhs ←< l, dl , eqr >

case 7

if rhs ∈ DD & lhs ∈ DD & eql , −1 & eqr = −1
/*Change the equivalence class of rhs from -1 to equivalence class of lhs*/

then
{
rhs ←< r , dr , eql >

case 8

if rhs ∈ DD & lhs ∈ DD & eql = −1 & eqr = −1
/*Genearte new Equivalence class and assign it to the lhs and rhs*/

then

eqnew ← NewEQ ()
rhs ←< r , dr , eqnew >

lhs ←< l, dl , eqnew >

case 9

if rhs ∈ DD & lhs ∈ DD & eql , −1 & eqr , −1 & eql , eqr
/*Genearte new Equivalence class and assign it to the lhs and rhs.
Update Equivalence class of all members of lhs and rhs*/

then

eqnew ← NewEQ ()
R ← GetMembers (eqr)
∀r ∈ R, rhs ←< r , dr , eqnew >

L ← GetMembers (eql)
∀l ∈ L, lhs ←< l, dl , eqnew >

3.5 IT Rule Annotation
The IT Rule Extraction [17], [20], [9], [21], [12] from large legacy
set source code consists of source code lines as a rule. The IT rule
annotation is explained in the Algo. 3.5.

ISEC’19, February 14–16, 2019, Pune, India P. Chittimalli et al.

012500 I F ACCT−RETURN−CODE = EXISTING−ACCOUNT 01250009
012600 MOVE L−ACCOUNT−ID OF ACCOUNT−COPY TO SRC−AC−ID 01260009
012700 MOVE L−ACCOUNT−BALANCE OF ACCOUNT−COPY TO SRC−BALANCE 01270009

Figure 4: A sample COBOL program.

/*Annotates the Program (P) using Data Dictionary DD and return SD*/

Algorithm 3.4: AnnotateProgram(DD,P)

/*Get all statements in the Program P*/
(0)SD = ϕ
(1)stmtList ← GetAllStmt (P)
/*Get each statement from the statement list*/
(2) ∀st ∈ stmtList
/*Get list of variables from the statement*/
(3) varList ← дetVariable (st)
/*get description of each var from DD.*/
(4) ∀var ∈ varList
(5) dvar = дetDescription(var)
/*Load template of annotation generator*/
(6) loadTemple ()
/*generate statement level annotation*/
(7) dstmt ← дenerateDescription(stmt)
/*update the statement dictionary*/
(8) SD ← SD ∪ < stmt ,dstmt >

/*Annotates the IT Rules (R) using Statement Dictionary SD and return annotated rules (AR)*/

Algorithm 3.5: AnnotateITRules(R)

(0)AR = ϕ
(1)itRuleList ← R
/*Get each IT rule from the IT rule list*/
(2) ∀r ∈ itRuleList
/*Get each statement from the rule r*/
(3) AD = ϕ
(4) ∀s ∈ r
/*get description of each statement s from SD.*/
(5) ds = дetDescription(SD,s)
/*create annotated description*/
(6) AD ← AD ∪ ds
/*update the annotated rules*/
(7) AR ← AR ∪ < r ,AD >
/*return the annotated rules set*/
(8) return(AR)

In this phase, each IT rule from the extracted IT rule set is anno-
tated automatically using SD as shown in Steps (4-6) of the above
algorithm. In the end, the annotated rules are populated Step (7)
and captured in a rule store for further access.

3.6 SBVR Rule Creation
The SBVR is a OMG standard. The rules are created by applying the
mappings defined by our earlier research [7]. We assume that the IT
Rules have been identified by the domain experts from the legacy
systems. These IT Rules are annotated using our earlier steps. In this
step, we also use domain expert to review and authorize the rules to
be processed further. These rules are subsequently translated using

SBVR-based Business Rule Creation for Legacy Programs using Variable Provenance ISEC’19, February 14–16, 2019, Pune, India

the heuristic rules that are defined in [7]. These heuristic rules are
defined on the structure of the rule sentence parsed using Stanford
dependency parser [13].

4 PRELIMINARY EVALUATION
We have implemented the tool ProgAnnotator to depict our gen-
eral approach of IT rule annotation using variable provenance. The
tool is implemented as an Eclipse Plug-in. In this section, we de-
scribe preliminary evaluations conducted using ProgAnnotator.
We considered 3 different subjects. The details of the subjects are
shown in Tab. 3.

The Subject 1 is a UK Taxation policy case study program written
in COBOL. It has 500 lines of code, 2 database tables, and 28 input-
output (I-O) variables in the program. The Subject 2 is a Fund
Transfer case study for a bank written in COBOL. It has 1,200 lines
of code, 9 database tables, 9 source files, and 62 I-O variables in
the program. The Subject 3 is a segment of Large legacy Insurance
having 80K LOC, and 2021 I-O variables.

We considered two qualitative aspect for the experiments, (1)
effectiveness of the approach in creating meaningful statement
level descriptions using variable provenance, and (2) we have used
extracted IT Rules and measured the accuracy of the creation of
annotated IT rules.

The tool created statement annotation in SD with 97.4% for
subject-1. For subject-2, the accuracy was 95% in building statement
level descriptions. We have manually verified the correctness of
the generation. The subject-3 is a segment of the real-life insur-
ance system code. The statement annotation could not be verified
manually due to sheer size of the source code.

ProgAnnotator tool annotates 487 lines correctly out of 500
lines of code for subject-1 and for subject-2, 1165 lines out of 1200
lines of code are annotated correctly. This subject has 12 IT rules
and 11 IT rules have been annotated accurately (with 91.67% ac-
curacy). Both subjects had variety of COBOL language statements
such as assignment statements (MOVE, SET), conditional expressions
(If..Then, Switch case), loop constructs (while), input/output
statements (READ, WRITE), function calls (CALL) etc. The annotated
IT rule statements for subject-2 and subject-3 is 94.12% and 94.17%
respectively. The results are shown in Tab. 4. All these annotated
IT-Rules are successfully translated to SBVR rules.

5 RELATEDWORK
Program comprehension and maintenance of legacy systems is
a never ending industrial problem. Gail Murphy et al. proposed
Software Reflexion models [15] to view the source code from the
lenses of high level models defined by an engineer to understand
the systems. This work uses an engineer defined high level model
and a model extracted from source code (such as a call graph or an
inheritance hierarchy) and defines a declarative mapping between
the two models. A software reflexion model is then computed to see
where the engineer’s high level model alignment with the source
model. Their studies on NetBSD and Microsoft Excel confirms the
applicability/reliability of the approach. As the source models have
been created manually by a domain expert, the applicability of such
techniques to annotate IT rules from business system becomes a non
trivial activity. This approach is a good way to explain the structural

aspects of the system at high level, but not as an application towards
annotating business rules. The work by A. van Deursen and L.
Moonen [19] shows hypertext-based program understanding. This
approach achieves a new levels of abstraction by using inferred
type information for cases where the subject software system is
written in a weakly typed language such as COBOL. Their work is
very close to our adapted approach. In this approach, the authors
inferred a type based on the usage of a variable. They used various
inferencing rules on the variables to group them in to a cluster. This
approach starts with assigning every variable a unique primitive
type and creates equivalences between these types based on the
usage such as:

• If variables are compared using some relational operator, it
is inferred that they belong to same type
• If an expression is assigned to a variable, the type of the

variable must be that of the expression.

The detailed inference rules used are based on the analysis of the
use of variables [18]. The inferencing rules used poses a serious
threat to clustering of variables. For an example, a naively written
program in which a same variable is used in multiple places in
different contexts to hold different types of values may lead to
the incorrect grouping of variables. The other limitation of this
approach was handling of the minimal set of literals included in
certain types. In our approach, we cluster the variables based on
control flow and data flow analysis making grouping of variables
more precise than the approach shown by above authors.

Provenance based techniques have been adopted by researchers
to understand the legacy systems over the years. A survey paper
by Simmhan et al. [16] talks about several research efforts in this
direction. The VisTrails system [6] shows how the availability of
provenance supports reflective reasoning. This is very crucial task
for users who perform exploratory tasks. The VisTrails tool pro-
vides a comprehensive provenance infrastructure for computational
tasks. Traditionally, the workflows are used to automate repetitive
tasks, but VisTrails uses provenance for exploratory tasks where
change is the norm. It uses a change based provenance where the
trails of every exploration are maintained. This information then
is used for workflow evolution. The generated workflows can be
revisited by scientists to reproduce, validate, and collaborate and
perform knowledge sharing. At large, the VisTrails focuses on ex-
ploratory tasks such as simulations, visualization and data mining.
On a similar line of work on the scientific workflow management
just as VisTrails, a scientific workflow system (Kepler) [4], aims
to keep track of all aspects of provenance in scientific workflows:
in workflow evolution, data and process provenance, and efficient
management and usage of collected data. Their approach differs
from VisTrails in a way that they provide a design of a provenance
collection framework that is highly configurable. This provenance
collection facility is parametric and customizable which a user may
use to limit the granularity of the collected data.

The dynamic analysis techniques coupled with instrumenta-
tion and log generation [3], [5] have the difficulty of generating
the right amount and quality of log information, and rely on ad-
equacy of test-data, making it very difficult to ensure generation
of all data provenances. The class summaries [8] can help only in
understanding the content of Java programs but not the relation

ISEC’19, February 14–16, 2019, Pune, India P. Chittimalli et al.

Table 3: Details of the subjects used for experimentation

Subject No. of No. of
No Name LOC Tables Domain

Vars
1 UK Taxation 500 2 28
2 Fund Transfer 1200 9 62
3 Large Insurance 80500 5 2021

(segment)

Table 4: Results of the study conducted.

Subject Statement No. of IT Rule
No Name Annotated IT Rules Annotation

Accuracy Considered Accuracy
1 UK Taxation 97.40% 12 91.67%
2 Fund Transfer 95% 17 94.12%
3 Large Insurance NA 103 94.17%

(segment)

among the classes and methods. Therefore, we used the concept
of variable provenance [11] in the context of a software process or
procedure [14]. There have been many attempts made in making
legacy programs comprehensible. One of the ways to get the better
understanding of the legacy systems is using the provenance. While
there is a voluminous amount of work done both on an attempt to
understand legacy systems better as well on the data provenance,
our approach differs from the existing work in a way that we used
the concept of provenance descriptions of the variables [11] (actu-
ally the provenance of a various types of data described as natural
text held by variables at different times) to annotate the source code
lines which constitutes the rules implemented within a system. We
use provenance information on variables and program analysis
techniques to create clusters of related variables (variables that are
used in similar patterns or the situations throughout the program).
This in turn helps us in annotating the source code with meaningful
natural language like descriptions. Using data-flow analysis and
control-flow analysis, our approach computes programme slices
for the IT rules extraction. Our approach to use provenance of vari-
ables to give meaningful descriptions and annotate the extracted IT
rules is a novel technique in a gamut of already existing works on
understanding legacy systems better. Our adapted approach creates
provenance information statically, rather than dynamically, sets
it apart from nearly all previous work. Most previous work, for
example scientific data provenance, using tools such as Kepler [4]
and VisTrails [6], creates a detailed data provenance on the fly as the
program executes. We on the other hand compute provenance stat-
ically and automatically based upon flow analysis such as reaching
definitions, slicing, etc. Our approach is novel and doesn’t require
a program execution (dynamic analysis) for collection and use of
provenance.

6 CONCLUSIONS
We have explored the idea of variable provenance, which creates text
descriptions for all ‘relevant’ variables in the source code. For the
sample set of programs, we have observed that the annotations gen-
erated for the variables, conditional expressions and the statements
are by-and-large meaningful for the developers to understand the
program logic. We used these annotated statement descriptions to
annotate the embedded IT rules for the sample and near-real-life
programs. We annotated the IT rules with 91% to 94% accuracy.

Following are the challenges that we encountered and which we
like to take forward:

• Critical assumption is the availability of descriptions for per-
sistent entities and constants used in the source code. While
descriptions for database tables and columns are usually

available, it is a challenge to procure/create descriptions for
Files and Constants.
• Combining provenance of multiple variables in a complex

calculation, especially under multi-conditions is a non-trivial
activity.
• Multiple provenances may be assigned to some variables.

This is because developers may use the same variable in
multiple contexts, usually in non-overlapping life spans. To
overcome the problem, annotation of variable can be stored
with the reference rather than its declaration. This decision
reflects a tradeoff between excessive storage and loss of
precision of provenance.
• Annotations attached to variables can blow-up due to im-

precise program analysis. A trade-off between imprecision
and execution time is the result of the choice of context- and
path-insensitive analysis versus context- and path-sensitive
analysis.
• For abstractions like loops, functions, we need to study and

evolve what kind of descriptions can be synthesized from
those of the contained statements.
• To generate description we rely on operators such as arith-

metic, assignment, and the type of statement. While these
descriptions are good enough to capture the essential at ini-
tial level, the abstract level description of code fragments
will be more meaningful and to generate such abstract de-
scription is not trivial activity.

REFERENCES
[1] [n. d.]. Semantics Of Business Vocabulary And Rules (SBVR).

http://www.omg.org/spec/SBVR/. ([n. d.]). [Online; accessed 19-July-2015].
[2] 2008. Prism: Static data and control Flow analysis workbench. Technical Report.

Tata Consultancy Services Ltd., Pune, India.
[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[4] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. 2006. Provenance Collection
Support in the Kepler Scientific Workflow System. In Proceedings of the 2006 In-
ternational Conference on Provenance and Annotation of Data (IPAW’06). Springer-
Verlag, Berlin, Heidelberg, 118–132. https://doi.org/10.1007/11890850_14

[5] Roger S. Barga and Luciano A. Digiampietri. 2006. Automatic Generation of
Workflow Provenance. In Proceedings of the 2006 International Conference on
Provenance and Annotation of Data (IPAW’06). Springer-Verlag, Berlin, Heidelberg,
1–9. https://doi.org/10.1007/11890850_1

[6] Louis Bavoil, Steven P. Callahan, Patricia J. Crossno, Juliana Freire, and Huy T.
Vo. 2005. VisTrails: Enabling interactive multiple-view visualizations. In In IEEE
Visualization 2005. 135–142.

[7] Abhidip Bhattacharyya, Pavan Kumar Chittimalli, and Ravindra Naik. 2017. An
Approach to Mine Business Rule Intents from Domain-specific Documents. In
Proceedings of the 10th Innovations in Software Engineering Conference (ISEC ’17).
ACM, New York, NY, USA, 96–106. https://doi.org/10.1145/3021460.3021470

[8] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in
Databases: Why, How, and Where. Found. Trends databases 1, 4 (April 2009),
379–474. https://doi.org/10.1561/1900000006

https://doi.org/10.1007/11890850_14
https://doi.org/10.1007/11890850_1
https://doi.org/10.1145/3021460.3021470
https://doi.org/10.1561/1900000006

SBVR-based Business Rule Creation for Legacy Programs using Variable Provenance ISEC’19, February 14–16, 2019, Pune, India

[9] Chia-Chu Chiang. 2006. Extracting business rules from legacy systems into
reusable components. In System of Systems Engineering, 2006 IEEE/SMC Interna-
tional Conference on. 6 pp.–. https://doi.org/10.1109/SYSOSE.2006.1652320

[10] Pavan Kumar Chittimalli and Kritika Anand. 2016. Domain-independent Method
of Detecting Inconsistencies in SBVR-based Business Rules. In Proceedings of
the International Workshop on Formal Methods for Analysis of Business Systems
(ForMABS 2016). ACM, New York, NY, USA, 9–16. https://doi.org/10.1145/2975941.
2975943

[11] Pavan Kumar Chittimalli and Ravindra Naik. 2014. Variable Provenance in
Software Systems. In Proceedings of the 4th International Workshop on Recommen-
dation Systems for Software Engineering (RSSE 2014). ACM, New York, NY, USA,
9–13. https://doi.org/10.1145/2593822.2593826

[12] A.B. Earls, S.M. Embury, and N.H. Turner. 2002. A method for the manual
extraction of business rules from legacy source code. BT Technology Journal 20,
4 (2002), 127–145. https://doi.org/10.1023/A:1021311932020

[13] Vijay Krishnan and Christopher D. Manning. 2006. An Effective Two-stage
Model for Exploiting Non-local Dependencies in Named Entity Recognition. In
Proceedings of the 21st International Conference on Computational Linguistics and
the 44th Annual Meeting of the Association for Computational Linguistics (ACL-44).
Association for Computational Linguistics, Stroudsburg, PA, USA, 1121–1128.
https://doi.org/10.3115/1220175.1220316

[14] Simon Miles. 2010. Automatically Adapting Source Code to Document Prove-
nance. In Provenance and Annotation of Data and Processes, DeborahL. McGuin-
ness, JamesR. Michaelis, and Luc Moreau (Eds.). Lecture Notes in Computer
Science, Vol. 6378. Springer Berlin Heidelberg, 102–110. https://doi.org/10.1007/
978-3-642-17819-1_13

[15] Gail C. Murphy, David Notkin, and Kevin Sullivan. 1995. Software Reflexion
Models: Bridging the Gap Between Source and High-level Models. In Proceedings
of the 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering
(SIGSOFT ’95). ACM, New York, NY, USA, 18–28. https://doi.org/10.1145/222124.
222136

[16] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. 2005. A Survey of Data
Provenance in e-Science. SIGMOD Rec. 34, 3 (Sept. 2005), 31–36. https://doi.org/
10.1145/1084805.1084812

[17] H.M. Sneed. 2001. Extracting business logic from existing COBOL programs as a
basis for redevelopment. In Program Comprehension, 2001. IWPC 2001. Proceedings.
9th InternationalWorkshop on. 167–175. https://doi.org/10.1109/WPC.2001.921728

[18] A. van Deursen and L. Moonen. 1998. Type inference for COBOL systems. In
Reverse Engineering, 1998. Proceedings. Fifth Working Conference on. 220–230.
https://doi.org/10.1109/WCRE.1998.723192

[19] Arie van Deursen and Leon Moonen. 2006. Documenting software systems
using types. Science of Computer Programming 60, 2 (2006), 205 – 220. https:
//doi.org/10.1016/j.scico.2005.10.006 Special Issue on Software Analysis, Evolution
and, Re-engineering.

[20] Chengliang Wang, Yaxin Zhou, and Juanjuan Chen. 2008. Extracting Prime
Business Rules from Large Legacy System. In Computer Science and Software
Engineering, 2008 International Conference on, Vol. 2. 19–23. https://doi.org/10.
1109/CSSE.2008.497

[21] Xinyu Wang, Jianling Sun, Xiaohu Yang, Zhijun He, and S. Maddineni. 2004.
Business rules extraction from large legacy systems. In Software Maintenance
and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European Conference on.
249–258. https://doi.org/10.1109/CSMR.2004.1281426

https://doi.org/10.1109/SYSOSE.2006.1652320
https://doi.org/10.1145/2975941.2975943
https://doi.org/10.1145/2975941.2975943
https://doi.org/10.1145/2593822.2593826
https://doi.org/10.1023/A:1021311932020
https://doi.org/10.3115/1220175.1220316
https://doi.org/10.1007/978-3-642-17819-1_13
https://doi.org/10.1007/978-3-642-17819-1_13
https://doi.org/10.1145/222124.222136
https://doi.org/10.1145/222124.222136
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1109/WPC.2001.921728
https://doi.org/10.1109/WCRE.1998.723192
https://doi.org/10.1016/j.scico.2005.10.006
https://doi.org/10.1016/j.scico.2005.10.006
https://doi.org/10.1109/CSSE.2008.497
https://doi.org/10.1109/CSSE.2008.497
https://doi.org/10.1109/CSMR.2004.1281426

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Data Description Table (DDT)
	3.2 Data Dictionary
	3.3 Variable Provenance Computation
	3.4 Sentence Annotation
	3.5 IT Rule Annotation
	3.6 SBVR Rule Creation

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusions
	References

