
An Approach to Mine SBVR Vocabularies and Rules from
Business Documents

Pavan Kumar Chittimalli
TRDDC, TCS Research

Pune, India
pavan.chittimalli@tcs.com

Chandan Prakash
TRDDC, TCS Research

Pune, India
ch.pr@tcs.com

Ravindra Naik
TRDDC, TCS Research

Pune, India
rd.naik@tcs.com

Abhidip Bhattacharyya∗
University of Colorado Boulder

Boulder, CO, USA
abhidip.bhattacharyya@colorado.edu

ABSTRACT
Enterprises model the behavior of their business to prepare a com-
munication standard for business analysts and to specify require-
ments to Information Technology (IT) people. The communication
gap between IT group and business analysts, who lie on the opposite
end of the business spectrum exists due to the different terminolo-
gies used in their respective fields regarding the same context. This
gap has led to major software failures which prompted the OMG
group has come up with a new standard - Semantic of Business
Vocabulary and Business Rules (SBVR). Declarative models are pro-
vided by SBVR to represent Business Vocabulary and Business Rules
which can be understood by everyone working throughout the
business spectrum. Each business is governed by business rules
which are constrained by the regulation policy set up by the policy
guidelines of the organization and government regulations set up
on the organization. Business rules are specified in documents like
user guides, requirement documents, terms and conditions, do’s
and don’ts. Typically a Business Analyst interprets the document
and manually extracts rules based on his understanding which
leads to potential discrepancies, ambiguities and quality issues in
the software system. To minimize such errors, in this paper we
present an unsupervised approach to automatically extract SBVR
vocabularies and rules from domain-specific business documents.
We also present our initial results and comparative study with our
earlier approach.

KEYWORDS
Business Rules Extraction, Rule Document, Rule Components, SBVR,
Natural Language Processing, Text Mining

∗This author has previously worked at TRDDC, currently pursuing PhD.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISEC 2020, February 27–29, 2020, Jabalpur, India
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7594-8/20/02. . . $15.00
https://doi.org/10.1145/3385032.3385046

ACM Reference Format:
Pavan Kumar Chittimalli, Chandan Prakash, Ravindra Naik, and Abhidip
Bhattacharyya. 2020. An Approach to Mine SBVR Vocabularies and Rules
from Business Documents. In 13th Innovations in Software Engineering Con-
ference (formerly known as India Software Engineering Conference) (ISEC
2020), February 27–29, 2020, Jabalpur, India. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3385032.3385046

1 INTRODUCTION
Business services are provided with the help of rules that constraint
the functioning of their operations and activities. Business rules
are the implementation core of any software system that automates
the process. The “if-then” rules are found in the source code of the
software system (IT system). These rules are designed by Business
Analyst & Business owners and found in requirements documents,
manuals, user guides, terms and conditions and do’s and don’ts of
the business. Business rules are constrained by the guidelines and
policies of government and business authorities.

Mostly Business rules are written in natural language by the
Business Analysts and presently involves a lot of manual work
to extract them from such documents. The rules which are mined
from the documents if expressed in natural language, again becomes
a cumbersome activity for the IT engineers while analyzing for
inconsistencies. The major issue of software failures in the industry
is because of the gap in communication between the IT people
and the Business Analysts [24]. The losses incurred due to such
software failures amount to nearly 250 billion dollars each year [3].

Semantics of Business Vocabulary and Rules (SBVR) [5] is a
standard for business rule representation by Object Management
Group (OMG) [2]. SBVR is a Controlled Natural Language (CNL)
and describes rules considering only a set of predefined business
vocabularies. SBVR provides a natural language interface with first
order logic (FOL). These semantics of SBVR makes it ideal for rep-
resenting business rules. SBVR can be used to formalize complex
compliance rules, such as security policy, operational rules for an
enterprise, regulatory compliance or standard compliance rules.
SBVR has two popular notations for specifications;1) SBVR Struc-
tured English (SBVRSE) [23] 2) RuleSpeak [31]. These notations
are based on Controlled Natural Language representation and yet
provides underlying model for machine manipulation. With the
SBVR representation, the problem can now be reduced to extracting
SBVR rules from various documents. The closest work is by Bajwa

https://doi.org/10.1145/3385032.3385046
https://doi.org/10.1145/3385032.3385046
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3385032.3385046&domain=pdf&date_stamp=2020-03-25

ISEC 2020, February 27–29, 2020, Jabalpur, India P. Chittimalli et al.

et al. [9], which generates SBVR format from a single line of English
text. In this work, a user inputs one English rule sentence (having
a subject, object, and a verb) at a time without any conjunctions
is converted into a SBVR rule automatically. To the best of our
knowledge, there has been no further work in mining SBVR rules
or rules in any other form. A typical document consisting of rule
statements with lot of noise words makes it hard to comprehend
and identify meaningful business rules. Another challenge is rule
sentences with several clauses that make rule comprehension even
more difficult. Moreover adherence to a particular format of the
document or format of the output may put question on the reusabil-
ity of the approach. Several techniques are proposed for extracting
rules from legacy source code [14, 18, 22, 33, 34] and knowledge ex-
traction from documents [17, 25, 26]. In our previous works [10, 11],
we proposed methods to extract atomic facts (rule intents) and re-
lations among these rule intents. However, these the outcomes of
our approaches are not machine processable representations.

To tackle this problem, in this paper we present an approach
to mine business rules and vocabularies in SBVRSE notation and
persist them in SBVR meta model to allow the IT engineers for
further analysis like anomaly detection [7, 15]. Unlike our earlier
approaches [10, 11], in this paper we present a new method to mine
SBVR rules and vocabularies from domain-specific documents in
an unsupervised (no-pre tagging required) manner. In this paper,
based on the knowledge gathered by our discussions with Business
Experts/Analysts, we tried to address multiple challenges like han-
dling document with lots of inherent noise, a rule statement with
several clauses and a rule having a rule nested inside, all of which
makes the miner even harder to interpret and resolve. Moreover, in
order to make our approach viable we must ensure that we do not
become specific to a single type of document while developing our
heuristics.

The paper is organized as follows: Section 2 describes the related
work done in this area. Section 3 provides a motivating example to
elaborate how the extracted SBVR vocabularies and rules look. In
section 4, we describe the detailed approach of mining the SBVR
rules and vocabularies. Section 5 illustrates the prototype tool and
experimental results. Section 6 describes the conclusion.

2 RELATEDWORK
The documents mining related research uses predictive classifi-
cation techiques or populating a database or search index with
information extraction techniques. The semi/automatic extraction
of SBVR vocabularies and rules extraction from documents is not
a very well explored research area. However, there appears little
research specific to mining of business rules or creating their formal
representations beside our research [10, 11] in this area. The related
work can be broadly classified into following categories.

(1) Natural Language Processing (NLP) techniques using shallow
parsing

(2) NLP Techniques creating finer levels of abstraction models
(3) NLP Techniques using dependency trees and machine learn-

ing (ML) for noise elimination.

The existing shallow parsing techniques such as [27, 32, 35],
uses a shallow parser [12] with predefined templates, making these

techniques tightly coupled and dependent on the document struc-
ture. The API document mining by R. Pandita et al. [27] proposed
a method to generate code contracts which consists of variables
and the relation among them as API contracts. The authors feed
the data to the shallow parser after pre-processing. The sentences
are subsequently mapped to set of First Order Logic (FOL) formu-
lae using predefined templates on shallow parser. Xaio et al. [35]
used a method called Text2policy. This technique use a shallow
parsing method to extract access rule and its corresponding action
steps from access control policies (ACP) defined in the document.
The authors also implemented a negative meaning implication (e.g.
verb like disallow) and a negative inference (word like never, not).
A. Sinha et al. [32] defined a Linguistic Analysis Engine to infer
Use Case models from Use Case Description (UCD) based on shal-
low parser using Standford NLP. This engine is built on top of
Unstructured Information Management Architecture (UIMA). The
authors also incorporated context annotators to allocate roles to the
nouns occurring in the predicates. These roles are either ACTORs or
SYSTEMs. Ultimately, their technique builds process models by iden-
tifying the use case action sequence and by scanning the actions
against known (pre-defined) use case patterns. The three works
described above use a pre annotated domain dictionary to classify
the verbs into some predefined classes depending on their seman-
tic equivalence. Their techniques serve specific purposes and are
centred on specific documents. These techniques largely benefit
from the structure of the documents and business vocabularies.

In the second category of related work (techniques uses a much
finer level models than shallow parsing), uses POS tag sequence. One
such method is proposed by S.Ghaisas et al. [20], focuses on retriev-
ing rule intents from requirement documents by matching them
against patterns made up of sequence of Part Of Speech (POS) tags,
key words and their repetitions denoted by wild characters like ‘*’,
‘+’ etc. They discovered 29 intents (such as threshold, chronology,
activity, temporal check to denote the intention of rule intent) and
517 rule intent patterns. The authors used agglomerative cluster-
ing to place co-occurring rules together. The effectiveness of their
technique has been shown on the internal/industrial case studies.

Apart from these techniques, there are few other works that
address the knowledge extraction from document using Informa-
tion Extraction technique. Colette Rolland et al. [30] proposed an
approach to guide the construction of textual use case specifications
from documents. The authors used the concept of case grammar
introduced by Fillmore [19]. This approach classifies the semantic
patterns into Clause and Sentence semantic patterns to capture
different surface structures of the sentences having same deep
meaning. This approach further used set of rules and guidelines
for converting the input into a use case. Atkinson et al. [8] used
genetic algorithms for inferring hypothesis from scientific docu-
ment written in natural language. H.Zhong et al. [36] proposed a
method of inferring resource specifications from API document
using machine learning. This research uses Hidden Markov Model
(HMM) [29] based named entity recognition for knowledge extraction.
The research by Putrycz et al. [28] for understanding the business
rules embedded in source code. This technique use patterns and
keywords derived from source code to create mappings between
business rules from source code to documents.

An Approach to Mine SBVR Vocabularies and Rules from Business Documents ISEC 2020, February 27–29, 2020, Jabalpur, India

The above related work techniques basically focus on domain
specific, project specific class of documents and take advantage of
the structure and format of the document. As the patterns, style,
structure of document is pre defined, the techniques uses a prede-
fined set of templates. The second category of work uses predefined
templates based out of POS tag sequence. The techniques also makes
the technique vulnerable to noise since the POS tag sequence can
produce incorrect rule intents due to noisy word sequences.

The third category is combining machine learning techniques
with NLP. Our earlier works [10, 11] addresses the problems such
as eliminating noise, identifying rule sentences in the structured
or unstructured documents, extracting rule intents from sentences,
and extracting relationship among the rule intents.

3 MOTIVATING EXAMPLE
In this section, we use a rule text from EURent-A-Car [1] example
to illustrate SBVR rule and vocabulary identification.

If a rental request does not specify a
particular car group or model, the allocated
car is A.

The first task in our approach is to automatically extract relevant
atomic facts from the rule sentence. The facts extracted from the
rule sentences are shown below.

f1 : speci f y(rental request, car group)

f2 : speci f y(rental request, car model)

f3 : is(allocated car, A)

Table 1: Rule intents of the sentence from earlier example

The above example document fragment has total 3 atomic facts
(rule intents). The next step in the workflow is identifying the
relations among the extracted rule intents. The relation among rule
intents extracted for the example are shown below:

Rule1 : ¬f1 ∨ ¬f2 → f3
Subsequently, the extracted rules (rule intents and relations be-

tween them) will be converted to SBVR models, which is a machine
manipulatable format, to perform analysis for verification & val-
idation [15]. SBVR is a Controlled Natural Language (CNL) and
describes rules considering only a set of predefined SBVR business
vocabularies. The SBVR vocabulary consists of terms concepts, name
concepts, fact concepts. SBVR Structured English (SE) specified using
coloring notation for easy readability of the rules. The green un-
derlying text denotes the terms, blue italic text denotes verbs, bold
face underlying text denotes the name (individual noun concept).
The SBVR Vocabulary and Rule in Structured English (SE) for the
example rule sentence is shown in Table 2 and Table 3

request

rental_request
General Concept: request
Definition: The request that is of rental
car

allocated_car
General Concept: car
Definition: The car that is allocated

car_model
Definition: The model that is of car

car_group
Definition: The group that is of car

A
General Concept: car

rental_request specify car _group
rental_request specify car _model
allocated_car is A

Table 2: The vocabulary in SBVRSE for the example sentence

It is necessary that if the rental_request doesn’t spec-
ify car _group or the rental_request doesn’t specify
car _model then the allocated_car is A

Table 3: The rule in SBVRSE for the example sentence using
SBVR Vocabulary

4 DETAILED METHODOLOGY
In this section, we first introduce our approach, and describe each
phase of the approach in later parts of the section.

The block diagram in Figure 1 illustrates our approach. Rule
sentences are parsed by natural language parser (SpaCy) [21] to
produce the dependency trees. Our approach for SBVR rule ex-
traction takes this dependency tree as input and provides possi-
ble vocabulary and rules as output. The extraction of rule intents
from dependency tree is done in four stages. In first step, the noise
elimination from the document to identify only the rule text from
document, followed by the identification of the entities and named
entities in the second step. In third step, the atomic facts in each
rule sentence has been identified. In fourth step, the relation be-
tween the facts have been identified and corresponding SBVR rule
is constructed based the extracted SBVR vocabulary.

ISEC 2020, February 27–29, 2020, Jabalpur, India P. Chittimalli et al.

Figure 1: Block diagram of our approach.

4.1 Rule Sentence Extraction
The primary objective of the Rule Sentence Extraction is to classify
the sentences in a given document into rule sentences or noise.
For this purpose, we use the concept of n-gram language model.
The trigram language model, a specialization of n-gram language
model [13], is well-known in NLP, and has been widely used in
many NLP tasks, like machine translations. A Trigram language
model consists of:

(1) A finite set of words ν .
(2) A parameter q(w |u,v) for each trigram u,v,w such thatw ∈

ν ∪ {STOP} and u,v ∈ ν ∪ {∗}, where STOP is a delimiter
word (e.g. ‘.’) and u,v,w are any three consecutive words in
a sentence. The symbol ‘*’ denotes prefix of a sentence when
handling the first word of the sentence.

For any sentence x1x2x3 . . . xn where xi ∈ ν for i = 1, 2, . . . ,n−1
and xn = STOP , the probability of the sentence under trigram
language model is given as:

p(x1x2x3 . . . xn) =
∏

i=1...n
q(xi |xi−2xi−1) (1)

Where x−1 = x0 = ∗

q(xi |xi−2xi−1) =λ1qML(xi |xi−2xi−1) + λ2qML(xi |xi−1)

+ λ3qML(xi)
(2)

qML(xi |xi−2xi−1) =
count(xi−2xi−1xi)

count(xi−2xi−1)
(3)

qML(xi |xi−1) =
count(xi−1xi)

count(xi−1)
(4)

qML(xi) =
count(xi)

|ν |
(5)

where λi s are weights such that λ1 + λ2 + λ3 = 1 and λi ≥ 1.
qML s are the maximum likelihood estimates of trigram, bigram
and unigram word porbability. The qML parameters are shown in
equations (3), (4), (5) for trigram, bigram and unigram, respectively.

In our approach, we propose two such language models:
(1) A trigram language model for relevant sentences and,
(2) A trigram language model for non-relevant or noise.

The two language models are trained; one using relevant sen-
tences and the other using non-relevant sentences. During testing,
a test sentence is given as input to the two language models to
predict the probabilities. A sentence will be classified as per the
language model which has a greater value than the other i.e. the
sentence will be classified as a rule sentence or a noise.

No account is opened in anonymous or fictitious name

Consider the above sentence as a test sentence. Let us assume that
the training data does not have the word ‘opened’, but has the word
‘create’ in the same context. The q factor of q(opened| account is)
will be calculated as ‘0’. This makes the probability of the whole
sentence under the particular language model as ‘0’, as described
by equation (1). Thus during testing if a word occurs in the test
sentence that is not seen during training in relevant sentences or
in noise, or in either of them, then such particular word sequence
results in the q factor as ‘0’ in that particular language model or in
both. Therefore classification of a sentence is controlled by a single
word in the sentence, and its absence or presence in the training
data. Such a solution makes the result biased, and is unacceptable.

To overcome this problem, a POS tag trigram is used for that
particular word sequence. Note that the particular word can oc-
cur in at most three combinations of word-trigrams. However,
the q factor can only be ‘0’ for the particular word (not seen in
the training data) that is conditioned on previous two words. In
this particular scenario of a trigram wi |wi−2wi−1 (wi is word un-
seen in training data), we use ti |ti−2ti−1 where ti ’s are the POS
tag of wi ’s, leaving all other q’s unchanged. We use the modi-
fied language model with POS tag for both, the relevant and noise
language models, if the word is unseen in the training data for
any one of the models. This makes the classification unbiased.
No︸︷︷︸
DT

account︸ ︷︷ ︸
NN

is︸︷︷︸
V BZ

opened︸ ︷︷ ︸
V BN

in︸︷︷︸
I N

anonymous︸ ︷︷ ︸
J J

or︸︷︷︸
CC

f ict it ious︸ ︷︷ ︸
J J

name︸ ︷︷ ︸
NN

In the above test sentence, we use POS tag sequence of q(VBN| NN
VBZ) instead of using q(opened | account is). This makes the values
of q same for ‘created’ and ‘opened’. The intuition behind incor-
porating POS tag in place of word is that a same POS tag sequence
can be treated as a representative set (template) of a group of word
sequences.

An Approach to Mine SBVR Vocabularies and Rules from Business Documents ISEC 2020, February 27–29, 2020, Jabalpur, India

4.2 Entity Extraction
The initial step involves extracting the entities and named entities
from the document. Entities are the common nouns, such as car,
person, sport etc, while Named Entities are proper nouns such
as EU-Rent, M S Dhoni, Ford, Orange etc. The SBVR facts
that are developed will have these entities as their subjects and the
objects, which are then used to form SBVR rules. We perform this
step in a completely unsupervised manner (no user tagging data
is required) which is achieved by making use of the different POS
tags that are assigned to the individual words in the document by
the SpaCy parser [21].

The input to this step is the business document cleaned by re-
moving text noise such as punctuations, words within brackets,
words within hyphens etc. We assume that the document is cleaned
beforehand by standard techniques [6]. By observing several sen-
tences in the document and the corresponding sequence of POS
tags, we propose a set of heuristics which help us to identify and
extract the entities. This however is not an intuitive process but
requires going through several statements in the document, identi-
fying the different POS tags that occur together and deciding which
pairs of such POS tags should be treated as a single entity. It may
also happen that some POS tag combinations only appear in a few
statements in the document. In this case it is necessary to ignore
such POS tag combinations otherwise it may cause our model to
be an over fitted one causing the precision of our entity extraction
model to fall.

We present two heuristics which we use for Entity extraction.
H1- The sequence of NOUN/NUM appearing in dependency tree:

entitystart

NOUN/NUM

Figure 2: Heuristic 1 for entity extraction.

Any number of nouns or numbers occurring together in
the document result in the entire group being classified as a
single entity as shown in Figure 2. The POS tags for the words
thus maybe NN, NNS, NNP, CD or NNPS. All of these are
just different type of nouns (like singular noun, plural noun,
singular proper noun, plural proper noun etc) or numbers
(like 123). This heuristic follows because if several nouns or
numbers occur all together, then they will always belong to
the same entity. Had they belonged to different entities, there
would have been some sort of a separator word between the
nouns. The separator word could be a punctuation mark,
a conjunction, a verb or any other non-noun word. As an
example consider Figure 3. The sentence is: ‘A rental request
specifies car group’. The words car and group occur together
and have the tags NN and NN respectively. Thus, this heuristic
gets applied and thus ‘car group’ becomes a single entity.

H2- The sequence of Adjectives followed by sequence of Noun/Nums:

A
DET

rental
ADJ

request
NOUN

specifies
VERB

car
NOUN

group
NOUN

det

compound
compound

compoundamod

Figure 3: Dependency tree for a sample sentence for Heuris-
tic1.

state1start state2

ADJ

NOUN/NUM

NOUN/NUM

Figure 4: Heuristic 2 for entity extraction.

Any number of adjectives(describer of a noun) coming to-
gether and then followed by any number of nouns or num-
bers will be considered as a single entity. Also, there may
be multiple qualifiers for a noun and hence many adjectives
may precede a noun or a number, which in turn may be
followed by any number of nouns or numbers. The DFA for
this heuristic is shown in Figure 4. The tags for the adjective
will be JJwhile that for a noun can be any of NN, NNP, NNS,
CD or NNPS.

Each
DET

authorized
VERB

driver
NOUN

must
VERB

have
VERB

a
DET

valid
ADJ

driving
NOUN

license
NOUN

compound
amod

det
dobj

aux
nsubj

amod
det

Figure 5: Dependency tree for a sample sentence for Heuris-
tic2.

The heuristic follows because many adjectives one after the
other will always belong to the same entity. Else, there would
have been some non-adjective and non-noun word in be-
tween to separate them out. The separators could be punc-
tuation, conjunctions, nouns etc. In Figure 5, consider the
sentence ‘Each authorized driver must have a valid driver
license.’ The word valid is an adjective, driver is a noun and
license is also a noun. Hence since these 3 words appear to-
gether, this heuristic fires and the three words get combined
into a single entity. Hence the new entity in this case is ‘valid
driver license’.

4.3 Fact Extraction
After the completion of Entity Extraction, all the multi word
entities are clubbed into a single word by inserting an underscore
between the different words. e.g., a multi word entity Government
of India becomes Government_Of_India after the completion of

ISEC 2020, February 27–29, 2020, Jabalpur, India P. Chittimalli et al.

first stage. This underscore insertion step is carried out on the entire
document and the new document is fed as input to the second stage.

Consider the following sentence as an example: ‘If the customer
requesting the rental has been blacklisted, the rental must be refused’.
In the given business sentence, the atomic facts are:

(1) customer requesting rental
(2) customer has been blacklisted
(3) rental must be refused
Every business domain comprises of various atomic facts. Every

atomic fact can have one of the three following structures:
• Verb Phrase has both Subject and Object: In this struc-
ture, the verb phrase has both the subject as well as the object
connected directly to the words on the verb phrase. The link-
age maybe through subject tags such as nsubj, nsubjpass,
and object tags such as dobj, pobj. This is one of the sim-
plest structures possible for an atomic fact.

Subject Verb Phrase Object

Figure 6: Heuristic 1 for fact extraction.

Local_tax

must be

collected

on

rental_charge

Figure 7: Structure for the fact extraction heuristic 1.

Example: Consider the sentence ‘Local tax must be collected
on the rental charge‘. In this sentence, must be collected is
the verb phrase. The subject is Local tax and the object is
rental charge, which are directly connected to one of the verb
phrase words as shown in Figure 7.

• Verb phrase has a subject, but no object: In this structure
the verb phrase has a set of words, one of which is directly
connected to a subject via one of the subject links. However,
there is no object tag connection between any of the verb
phrase words and some other noun in the document. Hence
the right pointer of the verb phrase is null, as shown in
Figure 8.

Subject Verb Phrase

Figure 8: Heuristic 2 for fact extraction.
Example: For the sentence ‘If the customer requesting the
rental has been blacklisted, the rental must be refused‘, the
verb phrase is has been blacklisted and subject is customer

customer
has been

blacklisted

Figure 9: Structure for the fact extraction heuristic 2.

which is directly connected to one of the verb phrase words.
However there is no object tag connection from any of the
verb phrase words. Hence the right pointer of the verb phrase
is null. Figure 9 shows the structure of the example.

• Verb phrase has an object, but no subject: In this struc-
ture the verb phrase has a set of words, one of which has a
direct object tag connection to some object. There is however
no subject tag connection from any of the verb phrase words
to any noun in the document. Hence the left pointer of the
verb phrase is null.
Example: In the sentence ‘If there are not sufficient cars in a
group to meet demand, a one-group free upgrade may be given
if there is capacity‘, the verb phrase is to meet. The word
demand is connected to one of the verb phrase words via an
object tag. However there is no subject tag connection from
any of the verb phrase words to any noun in the document.
Thus the left pointer of the verb phrase is null.

We now present the sequential steps that is followed in our
approach for Identification of Verb Phrase, Subject & Object.

4.3.1 Identification of the Verb Phrase.

(1) Get input tokens from a rule sentence.
(2) Identify the POS tag.
(3) If the POS tag is a VERB, then add the token in the VERB

PHRASE.
(4) Look for the child of the VERB added.
(5) If the child of the verb is not a noun and the dependency

link between the child and the verb is any of the following:
aux, auxpass, prep, advmod, acomp, xcomp, agent,
expl, then add the child in the Verb Phrase and if the child
is a verb then recursively check for its children.

(6) Take the next token in the rule sentence, if it is a verb repeat
the same activity and if the token is not a verb break the
Verb Phrase formation.

Figure 10 shows the flowchart of the process presented above.

4.3.2 Identification of the Subject.

(1) Iterate over every child of every element present in the Verb
Phrase, If the dependency link between the child and the
element of the Verb Phrase is one of the following: amod,
comp, compound, then assign the child as the subject of the
Verb Phrase and make the right child of the verb phrase
null, structure of such a verb phrase is shown in Figure 11.
For such cases, the verb phrase is connected via an amod,
comp or compound link to the subject and there will be just
a subject for the verb phrase, and no object.

(2) Iterate over every child of every element present in the Verb
Phrase. If the dependency link between the child and the
element of the Verb Phrase is one of the following: acl,

An Approach to Mine SBVR Vocabularies and Rules from Business Documents ISEC 2020, February 27–29, 2020, Jabalpur, India

Figure 10: Flowchart of the algorithm for verb phrase extrac-
tion.

Subject Verb Phrase null
amod/comp/compound

Figure 11: Heuristic for subject identification

relcl and the child is Noun, then assign the child as the
subject of Verb Phrase. The structure of such a verb phrase is
shown in Figure 13, In this case, the word in the verb phrase
is connected directly to the subject in the document via a
relcl or an acl tag. This condition is given a priority over
the normal subject tags heuristic.

e.g., In Figure 12 for the verb phrase requesting, the subject
will be customer because it is directly connected to requesting
via an acl tag.

customer
NOUN

requesting
VERB

rental
NOUN

has
VERB

been
VERB

blacklisted
VERB

auxpass
aux

nsubjpass

acl

dobj

Figure 12: Dependency tree for a sample sentence for subject
identification.

Subject Verb Phrase
acl/relcl

Figure 13: Structure of fact with acl link.

(3) Iterate over every child of every element present in the Verb
Phrase. If the dependency link between the child and the
element of the Verb Phrase is one of the following: nsubj,
nsubjpass, csubj, csubjpass (structure ofwhich is shown
in Figure 14) and the child is Noun, then assign the child
as the subject of Verb Phrase. For this rule, we try to find a
direct subject link between one of the verb. phrase words
and any other noun in the document, to which the word is
connected to. This noun is chosen as the subject for the verb
phrase. However, this step happens if and only if there is no
acl or relcl link from any of the verb phrase words.
e.g.,In Figure 15, Reservations is directly connected to may
which is a word on the verb phrase. Thus, for the verb phrase
may be accepted, the subject will be Reservations(the depen-
dency tag is nsubjpass).

Subject Verb Phrase
nsubj/csubj/nsubjpass/csubjpass

Figure 14: Structure of fact with direct subject link.

reservations
NOUN

may
VERB

be
VERB

accepted
VERB

auxpass
aux

nsubjpass

Figure 15: Dependency tree for direct nsubjpass link.

(4) Iterate over every child of every element present in the Verb
Phrase. If child is a Verb and the child belongs to a different
verb phrase then the subject of the verb phrase is the subject
of the verb phrase that the child belongs to.
e.g.,In Figure 16, the verb phrase may have has the subject
as customer. For the verb phrase may have only, there is
no direct subject link, neither through a direct object link,

ISEC 2020, February 27–29, 2020, Jabalpur, India P. Chittimalli et al.

nor through acl or relcl. Thus, we check if any word in
this verb phrase is connected to some other word in some
other verb phrase. Here the have of the second verb phrase
is connected to the have of the first verb phrase. We infer
that since the first verb phrase has a subject i.e. customer,
the second verb phrase will also have the same subject i.e.,
customer.

customer
NOUN

may
VERB

have
VERB

only
ADV

one
NUM

car
NOUN

dobj

nummodadvmodaux

nsubj

Figure 16: Example for verb phrase connected to a different
verb phrase.

(5) If the subject of the verb phrase assigned in the previous four
stages has a “conj” link then identify the child with which
the subject has a conj link and replicate the same structure
with the child as the new subject.
e.g., In Figure 17, the verb phrase requested has model as the
subject. However, since model itself is connected to group
via a conj tag, we replicate the entire fact structure and
replace model with the word that is connected to model via
the conj link i.e. group. Hence, we get two facts out of one
rule sentence.

several available cars
NOUN

of
ADP

model
NOUN

or
CCONJ

group
NUM

requested
VERB

nsubj

conj
ccpobj

prep

Figure 17: Example for handling conjunction for subjects.

(6) If there is no subject for a verb phrase, and after finding the
object, there is a noun connected to the verb phrase that has
not been used yet, assign this noun as the subject of the verb
phrase.

4.3.3 Identification of the Object.

(1) Iterate over every child of every element present in the Verb
Phrase. If the dependency link between the child and the
element of the Verb Phrase is one of the following: pobj,
dobj, iobj, xcomp, npadvmod and the child is Noun and
the element is not a preposition then assign it as an object.
The structure of this rule is shown in Figure 18. The word in
the verb phrase is attached to the object via any one of the
object dependency tags.
e.g., As illustrated in Figure 19, the verb phrase authorized
to drive has the object car directly attached to a word in the
verb phrase via the dobj link.

(2) If the Verb Phrase has a preposition which has an object and
the Verb Phrase also has a word which has an object then
the fact will have a structure like the one below without the
object. To handle the object of this fact, the verb phrase is
broken down into two parts, the verb phrase part without
the preposition and with the preposition. The preposition

Verb Phrase Object
iobj/pobj/dobj/xcomp/npadvmod

Figure 18: Structure of direct object link.

driver
NOUN

authorized
VERB

to
PART

drive
VERB

car
NOUN

during
ADP

rental
NOUN

pobj
prep

dobjaux

xcomp
nsubj

Figure 19: Dependency tree for direct object link.

is attached to the right of the verb phrase. The object of the
preposition is attached to the right of the new preposition
node created, while the object of the non-preposition word
is attached to the left of the preposition node, as shown in
Figure 20 and 21.
e.g., In sentence ‘customer may have only one car at a time’
the verb phrase may have only at has the word only has the
noun and one car attached to it. The preposition at has the
noun time attached to it. Thus, this is a verb phrase in which
there are two words in the phrase having their own different
objects.

Figure 20: Structure of fact without object.

Non-Prep

Subject Prep

Object1 Object2

Figure 21: Structure of a verb phrase having 2 objects con-
nected to it.

(3) If the Verb Phrase has two prepositions, both the prepositions
having an object associated with them, then we remove the
two prepositions from the verb phrase and separate them
out into two different nodes. Thus the verb phrase has the
prepositions taken away from it. The first preposition has
the left child of it as null and the right child as the second
preposition. The second preposition has the child of the first
preposition as its left child and its own child as the right
child. The structure is shown in Figure 22.

(4) If there is any preposition in the verb phrase connected to an
object, then this object becomes the object of the preposition.

An Approach to Mine SBVR Vocabularies and Rules from Business Documents ISEC 2020, February 27–29, 2020, Jabalpur, India

Non-Prep

Subject Prep1

None Prep2

Object1 Object2

Figure 22: Structure of a verb phrase having 2 objects con-
nected to it.

e.g., Consider the sentence ‘end date of rental must be before
any schedule maintenance of the car’. The verb phrase must
be before, the object of this verb phrase booking is connected
to the preposition before in the verb phrase and so this rule
gets applied.

(5) If the object of the verb phrase assigned in the previous four
stages has a conj link then identify the child with which the
object has a conj link and replicate the same structure with
the child as the new object.
e.g., In the example sentence ‘if a rental request doesn’t
specify particular car group or model the default group is
allocated’. The object of the verb phrase does not specify, i.e.
particular car group has a conj link attached to it. Thus, the
same structure is replicated and the node particular car group
in the tree is replaced by model, which is the conj link word
connected to particular car group.

(6) If there is no object for a verb phrase, and after finding the
subject, there is a noun connected to the verb phrase that
has not been used yet, assign this noun as the object of the
verb phrase.

4.4 Rule Extraction
The input to the final stage is the set of facts extracted from the
document. Rules are defined as the constraints on the facts. Any
statement present without any constraint such as less than, more
than etc. is just a fact. When we impose some sort of a constraint on
the fact, it becomes a rule. It is these rules that we need to extract
from the document.
As mentioned earlier, we represent the rules in SBVR. The types of
rules that we consider in our approach are:

• If-then rule
(a) IF fact1 and/or fact2 and/or · · · n times THEN fact1 and/or

fact2 and/or · · · n times e.g., If the age of driver is greater
than eighteen and he has a valid driving license then he is
eligible to drive the car

(b) fact1 and/or fact2 and/or · · · n times IF fact1 and/or fact2
and/or · · · n times. e.g., A car from another branch may
be allocated, if there is a suitable car available and there is
time to transfer it to the pick-up branch.

(c) IF fact1 and/or fact2 and/or · · · n times THEN fact1 and/or
fact2 and/or n times IF fact1 and/or fact2 and/or · · · n
times.

e.g., If there are not suffcient cars in a group to meet de-
mand, a one group free upgrade may be given if there is
capacity.

• m× n subject-object relations Subject1 and/or Subject2 and/or
Subject3 · · · n times Verb Phrase Object1 and/or Object2
and/or Object3 · · · n times.
e.g., Extras such as insurance, fuel and taxes must be paid
by cash or credit card.

• atomic facts as obligatory rules.
e.g., Local tax must be collected on rental charge.

Algorithm for Rule Extraction
The following algorithmic steps are carried out converting to SBVR
rules using the entities and facts extracted.

(1) All the facts that were extracted are put into a single list.
This list actually contains the roots of all the fact-trees.

(2) If the size of the list is 1 ie; there is only one fact for the
entire sentence, then this rule sentence is an atomic fact. We
add the rule header It is obligatory that to the atomic fact to
get the rule.

(3) If the sentence contains an if, we find out which is the fact
that has a word of it connected to this if. This fact is put in
the if-list.

(4) If more than one Ifs are present, all facts connected to them
via a mark tag are put into the if-list.

(5) The fact that comes just after the fact in the if-list is then
put in the then list.

(6) If the fact that was put in the if-list was the last fact of the
rule sentence, the first fact of the rule sentence is put in the
then-list.

(7) If there are any conjunctions connected to the fact in the
if-list, the other fact connected via the conjunction link is
also put in the if-list. If this fact is in the then-list, remove it
from the then-list.

(8) If there are any conjunctions connected to the fact in the
then-list, the other fact connected via the conjunction link
is also put in the then-list.

(9) Find out whether the phrase other than appears in the rule
statement. If it does, create an other-than list and put the
fact that comes just after the other-than in this list. Also,
if the fact was present in the then-list, remove it from the
then-list.

(10) Put all the remaining facts in the then-list.
(11) Connect all the facts in the if-list with the appropriate con-

junctions. Also, connect all the facts in the then-list with
the appropriate conjunctions. The conjunctions can be like
and or or. The conjunction depends on that present in the
sentence.

(12) Thus we classify all the facts extracted into one of the three
lists if-list, then-list, or other-than-list.

Heuristics for Rule Mining
We list the heuristics that we follow for rule mining, based on our
experiments and understanding of the problem.

• If there is a single If in a statement, the verb phrase which
is connected by a mark tag to the If is put into the If-list.

ISEC 2020, February 27–29, 2020, Jabalpur, India P. Chittimalli et al.

The fact placed immediately next to that fact is put in the
then-list. If the fact used was the last one, the first fact is put
in the then list.

• If there are more than 1 Ifs in the statement, then both the
facts which are connected to the 2 Ifs via the mark tag are
put in the If list whereas the fact coming immediately after
them is put in the then list.

• If there is a conjunction attached to one of the words in
the fact attached to the If-list, then the other fact attached
through the conjunction tag is also put in the same list as
the one before (If-list or then-list).

• If there is an other than present in the sentence, an other-
than-list is created and the fact coming right next to it is put
in this list.

• If there is an ‘unless‘ present in the sentence, an unless-list
is created and the fact coming right next to it is put in this
list.

5 EXPERIMENTAL STUDY AND RESULTS
In this section, we first present details of our experimental subjects
and then discuss the various experiments that we conducted on our
prototype tool which is embedded in the tool BuRRiTo [16].

5.1 Experimental setup
We have used SpaCY parser [21] for parsing the rule sentences, POS
tagging, and for creating the dependency tree. We have built a pro-
totype tool to implement our detailed approach. The experiments
have been performed with the prototype on Windows 7 machine
with COREi5 processor and 2 GB RAM.

We have evaluated our prototype tool with two sets of subjects:
1) Know Your Customer (KYC) [4] document consists of guidelines
for banks about collecting various details of their customer in con-
ducting their business. The set comprised of 630 sentences, out
of them 185 sentences were marked as non-rule or non-relevant
sentences. 2) The requirements for a fictitious car rental company
EU-RentACar [1], the document has 64 rules.

5.2 Experiments conducted
We tried to address following research questions:
RQ1): The efficacy of our approach.
For the evaluation purpose, we have used precision and recall as
the parameters for measuring the efficacy of our approach. Recall
is defined as the ratio of number of True Positive Instances (TPI) to
the number of actual positive instances (API). Precision is defined as
the ratio of number of True Positive Instances (TPI) to the number
of True Positive Instances and False Positive Instances (FPI). The
below tables 4, 5 shows the precision and recall values observed for
the EU-Rent, KYC documents, each for the entities, facts and rules.
RQ2: Howwell this technique performs comparingwith ear-
lier approach? We have compared results of our new approach
with earlier approach [10, 11]. The following Table 6 shows the
results of our study.

The results shows that our new approach has improved precision
by 7-20%, recall by 7-25%, and speed up the process by 25%.

EU-Rent
Test tool correctly incorrect precision recall
on extracted extracted extraction
Entities 277 271 6 97.83% 97.83%
Facts 177 159 18 89.83% 88.82%
Rules 64 54 10 84.38% 84.38%

Table 4: Results on EURent.

KYC Document
Test tool correctly incorrect precision recall
on extracted extracted extraction
Entities 548 530 18 96.71% 96.71%
Facts 350 299 51 85.42% 85.42%
Rules 638 534 98 83.69% 84.49%

Table 5: Results on RBI KYC document.

Subject Technique time(sec) precision recall
EURent earlier 245 89.82% 89.82%
EURent current 181 96.71% 96.71%
KYC earlier 683 63.81% 59.65%
KYC current 597 83.69% 84.49%

Table 6: The comparison of this approach to our earlier ap-
proach.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented an unsupervised approach to
mine SBVR vocabularies and rules from business documents. To
achieve this, we have broken down the problem into four parts i.e.
rule sentence extraction, entity extraction, fact extraction and rule
mining. The first step was part of our earlier approach [], the second
and third steps constitute the extraction of vocabulary from the
document. The novelty of this approach lies in the fact that this is
totally unsupervised and hence doesn’t require the labelling of large
amounts of training data. The heuristics that we have developed
are completely domain independent. We need to experiment with
many other documents to ascertain the acceptability of our system.
For now, we have designed the system for the EU-rental document
and have tested it on the EU-rental and KYC documents. The results
of the experiments that we have conducted so far have indeed been
promising in terms of the measures of accuracy, recall and precision.
This all the more increases our motivation towards using a formal
standard notation such as SBVR and making improvements to our
techniques to make them useful for the industry application. In the
future the system can be made better by refining the heuristics that
we have developed so as to increase its efficiency, precision and
recall measures. Also, the rules that we have handled for now are
just the explicitly written if-then rules and the single fact rules. This
can be extended to handle all the implicitly written if-then rules
as well. One more extension could possibly be handling business
documents written in different languages. It is highly probable that
entities, facts and rules in the business documents written in a
non-English language could also be extracted and converted into a

An Approach to Mine SBVR Vocabularies and Rules from Business Documents ISEC 2020, February 27–29, 2020, Jabalpur, India

suitable standard format for that language. Another aspect of the
task that is not handled currently is the feature of co-referencing.
SpaCy does not support co-referencing and thus our system does
not resolve the co-references used in the document. In the future
however, this can be dealt with by using libraries provided for
spaCy to resolve the problem of co-referencing.

REFERENCES
[1] [n. d.]. EU-RentACar case study. http://www.businessrulesgroup.org/first_paper/

br01ad.htm. [Online; accessed 18-April-2016].
[2] [n. d.]. Object Management Group(OMG). http://www.omg.org. [Online;

accessed 29-September-2015].
[3] [n. d.]. Poor Communication Leads to Project Failure One Third of

the Time. Retrieved Oct 20, 2018 from https://www.coreworx.com/
pmi-study-reveals-poor-communication-leads-to-project-failure-one-third-of-the-time/

[4] [n. d.]. Reserve Bank of India (RBI), Master Circulars. https://rbi.org.in/scripts/
BS_ViewMasCirculardetails.aspx/?id=9031. [Online; accessed 18-April-2016].

[5] [n. d.]. Semantics Of Business Vocabulary And Rules (SBVR). http://www.omg.
org/spec/SBVR/. [Online; accessed 29-September-2015].

[6] Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D.
Trippe, Juan B. Gutierrez, and Krys Kochut. 2017. A Brief Survey of Text Mining:
Classification, Clustering and Extraction Techniques. CoRR abs/1707.02919 (2017).
arXiv:1707.02919 http://arxiv.org/abs/1707.02919

[7] Kritika Anand, Pavan Kumar Chittimalli, and Ravindra Naik. 2018. An Automated
Detection of Inconsistencies in SBVR-based Business Rules Using Many-sorted
Logic. In Practical Aspects of Declarative Languages, Francesco Calimeri, Kevin
Hamlen, and Nicola Leone (Eds.). Springer International Publishing, Cham, 80–
96.

[8] J. Atkinson-Abutridy, C. Mellish, and S. Aitken. 2004. Combining Information
Extraction with Genetic Algorithms for Text Mining. IEEE Intelligent Systems 19,
3 (May 2004), 22–30. https://doi.org/10.1109/MIS.2004.4

[9] Imran Sarwar Bajwa, Mark G. Lee, and Behzad Bordbar. 2011. SBVR Business
Rules Generation from Natural Language Specification. In AI for Business Agility,
Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-03, Stanford,
California, USA, March 21-23, 2011.

[10] Abhidip Bhattacharyya, Pavan Kumar Chittimalli, and Ravindra Naik. 2017. An
Approach to Mine Business Rule Intents from Domain-specific Documents. In
Proceedings of the 10th Innovations in Software Engineering Conference (ISEC ’17).
ACM, New York, NY, USA, 96–106. https://doi.org/10.1145/3021460.3021470

[11] Abhidip Bhattacharyya, Pavan Kumar Chittimalli, and Ravindra Naik. 2018.
Relation Identification in Business Rules for Domain-specific Documents. In
Proceedings of the 11th Innovations in Software Engineering Conference (ISEC ’18).
ACM, New York, NY, USA, Article 14, 5 pages. https://doi.org/10.1145/3172871.
3172884

[12] Branimir K Boguraev. 2000. Towards finite-state analysis of lexical cohesion. In
Proceedings of the 3rd international conference on finite-state methods for NLP.

[13] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. 1992. Class-based N-gram Models of Natural Language. Comput.
Linguist. 18, 4 (Dec. 1992), 467–479. http://dl.acm.org/citation.cfm?id=176313.
176316

[14] C. C. Chiang. 2006. Extracting business rules from legacy systems into reusable
components. In 2006 IEEE/SMC International Conference on System of Systems
Engineering. 6 pp.–. https://doi.org/10.1109/SYSOSE.2006.1652320

[15] Pavan Kumar Chittimalli and Kritika Anand. 2016. Domain-independent method
of detecting inconsistencies in SBVR-based business rules. In Proceedings of the
International Workshop on Formal Methods for Analysis of Business Systems@ASE
2016. ACM, 9–16.

[16] Pavan Kumar Chittimalli, Kritika Anand, Shrishti Pradhan, Sayandeep Mitra,
Chandan Prakash, Rohit Shere, and Ravindra Naik. [n. d.]. BuRRiTo: A Framework
to Extract, Specify, Verify and Analyze Business Rules. Automated Software
Engineering (ASE 2020).

[17] Fabio Ciravegna. 2001. Adaptive Information Extraction from Text by Rule Induc-
tion and Generalisation. In Proceedings of the 17th International Joint Conference
on Artificial Intelligence - Volume 2 (IJCAI’01). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1251–1256.

[18] A. B. Earls, S. M. Embury, and N. H. Turner. 2002. A Method for the Manual
Extraction of Business Rules from Legacy Source Code. BT Technology Journal
20, 4 (Oct. 2002), 127–145.

[19] Charles J. Fillmore. 1968. The Case for Case, Dins. In Universals in Linguistic
Theory, Emmon Bach and R. Harms (Eds.). Holt, Rinehart, and Winston.

[20] S. Ghaisas, M. Motwani, and P.R. Anish. 2013. Detecting system use cases and
validations from documents. In Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on. 568–573. https://doi.org/10.1109/
ASE.2013.6693114

[21] Matthew Honnibal and Mark Johnson. 2015. An Improved Non-monotonic Tran-
sition System for Dependency Parsing. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Lisbon, Portugal, 1373–1378. https://aclweb.org/anthology/D/D15/
D15-1162

[22] Hai Huang. 1996. Business Rule Extraction from Legacy Code. In Proceedings of
the 20th Conference on Computer Software and Applications (COMPSAC ’96). IEEE
Computer Society, Washington, DC, USA, 162–. http://dl.acm.org/citation.cfm?
id=872750.873408

[23] François Lévy and Adeline Nazarenko. 2013. Formalization of Natural Language
Regulations through SBVR Structured English. In Theory, Practice, and Applica-
tions of Rules on the Web, Leora Morgenstern, Petros Stefaneas, François Lévy,
Adam Wyner, and Adrian Paschke (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 19–33.

[24] Doug McDavid. [n. d.]. The Business-IT Gap: A Key Challenge. Retrieved Oct
20, 2018 from http://www.almaden.ibm.com/coevolution/pdf/mcdavid.pdf

[25] Ion Muslea et al. 1999. Extraction patterns for information extraction tasks: A
survey. In The AAAI-99 Workshop on Machine Learning for Information Extraction,
Vol. 2.

[26] T. Nasukawa and T. Nagano. 2001. Text analysis and knowledge mining system.
IBM Systems Journal 40, 4 (2001), 967–984. https://doi.org/10.1147/sj.404.0967

[27] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring Method Specifications from Natural Language API
Descriptions. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 815–825.

[28] Erik Putrycz and Anatol W. Kark. 2008. Rule Representation, Interchange and
Reasoning on the Web: International Symposium, RuleML 2008, Orlando, FL, USA,
October 30-31, 2008. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
Chapter Connecting Legacy Code, Business Rules and Documentation, 17–30.
https://doi.org/10.1007/978-3-540-88808-6_5

[29] Lawrence R Rabiner and Biing-Hwang Juang. 1986. An introduction to hidden
Markov models. ASSP Magazine, IEEE 3, 1 (1986), 4–16.

[30] Colette Rolland and Camille Ben Achour. 1998. Guiding the Construction of
Textual Use Case Specifications. Data Knowl. Eng. 25, 1-2 (March 1998), 125–160.
https://doi.org/10.1016/S0169-023X(97)86223-4

[31] Ronald G. Ross. [n. d.]. The RuleSpeakÂ® Business Rule Notation. Retrieved
Oct 20, 2018 from http://www.brcommunity.com/articles.php?id=b282

[32] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. 2009. A linguistic analysis
engine for natural language use case description and its application to depend-
ability analysis in industrial use cases. In Dependable Systems Networks, 2009.
DSN ’09. IEEE/IFIP International Conference on. 327–336. https://doi.org/10.1109/
DSN.2009.5270320

[33] H. M. Sneed. 2001. Extracting business logic from existing COBOL programs as
a basis for redevelopment. In Program Comprehension, 2001. IWPC 2001. Proceed-
ings. 9th International Workshop on. 167–175. https://doi.org/10.1109/WPC.2001.
921728

[34] Xinyu Wang, Jianling Sun, Xiaohu Yang, Zhijun He, and S. Maddineni. 2004.
Business rules extraction from large legacy systems. In Software Maintenance
and Reengineering, 2004. CSMR 2004. Proceedings. Eighth European Conference on.
249–258. https://doi.org/10.1109/CSMR.2004.1281426

[35] Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. 2012. Au-
tomated Extraction of Security Policies from Natural-language Software Docu-
ments. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article
12, 11 pages. https://doi.org/10.1145/2393596.2393608

[36] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring Resource Spec-
ifications from Natural Language API Documentation. In Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engineering
(ASE ’09). IEEE Computer Society, Washington, DC, USA, 307–318. https:
//doi.org/10.1109/ASE.2009.94

http://www.businessrulesgroup.org/first_paper/br01ad.htm
http://www.businessrulesgroup.org/first_paper/br01ad.htm
http://www.omg.org
https://www.coreworx.com/pmi-study-reveals-poor-communication-leads-to-project-failure-one-third-of-the-time/
https://www.coreworx.com/pmi-study-reveals-poor-communication-leads-to-project-failure-one-third-of-the-time/
https://rbi.org.in/scripts/BS_ViewMasCirculardetails.aspx/?id=9031
https://rbi.org.in/scripts/BS_ViewMasCirculardetails.aspx/?id=9031
http://www.omg.org/spec/SBVR/
http://www.omg.org/spec/SBVR/
http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1707.02919
https://doi.org/10.1109/MIS.2004.4
https://doi.org/10.1145/3021460.3021470
https://doi.org/10.1145/3172871.3172884
https://doi.org/10.1145/3172871.3172884
http://dl.acm.org/citation.cfm?id=176313.176316
http://dl.acm.org/citation.cfm?id=176313.176316
https://doi.org/10.1109/SYSOSE.2006.1652320
https://doi.org/10.1109/ASE.2013.6693114
https://doi.org/10.1109/ASE.2013.6693114
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
http://dl.acm.org/citation.cfm?id=872750.873408
http://dl.acm.org/citation.cfm?id=872750.873408
http://www.almaden.ibm.com/coevolution/pdf/mcdavid.pdf
https://doi.org/10.1147/sj.404.0967
https://doi.org/10.1007/978-3-540-88808-6_5
https://doi.org/10.1016/S0169-023X(97)86223-4
http://www.brcommunity.com/articles.php?id=b282
https://doi.org/10.1109/DSN.2009.5270320
https://doi.org/10.1109/DSN.2009.5270320
https://doi.org/10.1109/WPC.2001.921728
https://doi.org/10.1109/WPC.2001.921728
https://doi.org/10.1109/CSMR.2004.1281426
https://doi.org/10.1145/2393596.2393608
https://doi.org/10.1109/ASE.2009.94
https://doi.org/10.1109/ASE.2009.94

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Detailed Methodology
	4.1 Rule Sentence Extraction
	4.2 Entity Extraction
	4.3 Fact Extraction
	4.4 Rule Extraction

	5 Experimental Study and Results
	5.1 Experimental setup
	5.2 Experiments conducted

	6 Conclusion and Future work
	References

